Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Domest Anim ; 58(5): 571-582, 2023 May.
Article in English | MEDLINE | ID: mdl-36748111

ABSTRACT

Protocols for fixed-time artificial insemination (FTAI) in swine reproduction can help increase genetic improvement and production efficiency. Different gonadotropin-releasing hormone (GnRH) agonists have been developed to gain better control of follicular development, timing, and ovulation quality; therefore, they have been extensively used in FTAI protocols. This literature review resumes the most important characteristics of the physiology of follicular development and ovulation in sows, followed by a discussion about the hormonal alternatives available to induce ovulation (human chorionic gonadotropin, hCG; porcine luteinizing hormone, LH and GnRH agonists). Also, ovulation induction failures with GnRH agonists are described. Finally, current FTAI protocols with GnRH agonists are resumed and discussed. FTAI with GnRH agonists has proven to be an efficient, successful reproductive protocol that can be implemented in pig farms due to better knowledge of an endocrine system that regulates follicular development and ovulation and increased availability of several GnRH agonists that allow more efficient reproductive swine programs.


Subject(s)
Ovulation , Reproduction , Humans , Female , Animals , Swine , Luteinizing Hormone , Insemination, Artificial/veterinary , Insemination, Artificial/methods , Gonadotropin-Releasing Hormone
2.
Front Vet Sci ; 9: 929858, 2022.
Article in English | MEDLINE | ID: mdl-35847654

ABSTRACT

The aim of this research was to compare the different techniques to measure sperm nuclear DNA fragmentation (sDF) and to check its relations to boar reproductive value, classical spermiogram parameters, and reproductive results of the doses in sows. Sperm chromatin stability assay (SCSA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and sperm chromatin dispersion test (SCD, Halomax®) results were compared, finding a statistically significant correlation only between SCSA and TUNEL results. The fertility direct boar effect (DBE) index, calculated from the whole productive life of the boar, was not correlated (p > 0.05) with sDF (measured by any technique). Total or progressive sperm motility was not correlated with sDF, while it found a positive correlation between TUNEL measure and abnormal acrosomes (%) and between SCD measure and total sperm morphological abnormalities (%). No significant correlations were obtained between fertility or prolificacy results and sDF results with the different techniques. However, in the case of total born and SCSA measure, the correlation was close to significance (r partial = -0.095; p = 0.066), appointing to a tendency; as SCSA increases, the number of total piglets born decreases. In conclusion, although the different techniques for the sDF seem not to target exactly the same DNA events and the relationship between their values and the reproductive results and the classical spermiogram results is still to be elucidated, the studied sDF techniques may offer extra information that could be useful for the management of AI studs.

3.
Front Vet Sci ; 9: 956630, 2022.
Article in English | MEDLINE | ID: mdl-35903132

ABSTRACT

The addition of melatonin in seminal extenders due to its antioxidant properties and its beneficial role in sperm preservation has been previously described, especially in seasonal species. The aim of this study was to study a potential seasonal effect based on photoperiod duration when adding a physiological concentration of melatonin in the canine ejaculate. A total of 24 ejaculates were obtained from 10 healthy dogs during the increasing photoperiod (from December 21 to June 21), whereas 12 ejaculates were collected from five healthy individuals during the decreasing photoperiod (from June 22 to December 20). Each ejaculate was separated into two aliquots, and one of them remained as a control, whereas melatonin (100 pM) was added to the other one (C and M treatment groups, respectively). Diluted semen was refrigerated at 5°C. On days 0, 1, 2, 3, and 6, sperm motility analyses were performed using a CASA system and hypoosmotic swelling test (HOST), osmotic resistance test (ORT), and flow cytometry analysis. No effect of melatonin on motility was detected in either photoperiod. Negative effects of melatonin were found for acrosomal defects, apoptosis, and viability in the decreasing photoperiod. The addition of melatonin to sperm in the decreasing photoperiod could create such a high level that it would cause the described negative effects. We found a beneficial effect of melatonin in the increasing photoperiod on acrosomal defects and apoptosis during 0-6 days. Melatonin treatment also increased viability in the short term (days 1 and 2) for both photoperiods. Also, melatonin can provide certain beneficial effects on mitochondrial activity in the medium term (days 2 and 3) in the decreasing photoperiod.

4.
Animals (Basel) ; 11(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572479

ABSTRACT

There are numerous cases when conventional spermiogram parameters are all within an acceptable range but boar subfertility persists. The total sperm nuclear DNA fragmentation index (tDFI) is a trait related to fertility and prolificacy problems that is not routinely evaluated in commercial AI boars. The aim of this research was to study the effect of the photoperiod, season and reproductive age of the boar on tDFI (measured by SCSA) of 1279 ejaculates from 372 different boars belonging to 6 different breeds located in 6 AI studs in Spain. tDFI data ranged from 0.018% to 20.1%. Although there was a significant single boar effect in the tDFI occurrence, a negative correlation between the tDFI and the age of the boar was found (p < 0.001). tDFI would decrease due to aging of the boar 0.66% each year old within the observed age range. After including age as a covariate in the ANCOVA, no differences were found in tDFI between photoperiods when the sperm collection date was evaluated. However, when the date of the production of semen in the testis was evaluated, the total percentage of spermatozoa with fragmented nuclear DNA was 1.46% higher in the increasing photoperiod in comparison to the decreasing photoperiod (p < 0.0001). On the other hand, for both dates, the lowest tDFI values corresponded to minimum day length for decreasing photoperiod phase (autumn), while the highest tDFI values were found in summer (maximum day length for decreasing photoperiod phase).

5.
Front Physiol ; 11: 785, 2020.
Article in English | MEDLINE | ID: mdl-32774306

ABSTRACT

AIM: Exposure of boar sperm cells to Bisphenol A diglycidyl ether (BADGE) has been shown to lead to reproductive failure in sows, however, the mode of action is unknown. As we have recently shown that BADGE can interfere with Ca2 + signaling in human sperm cells through an action on CatSper, and as CatSper has been shown to be expressed in boar sperm cells, we hypothesized that a similar mechanism in the boar sperm cells could be responsible for the reproductive failure. METHODS: Direct effects of BADGE and the endogenous ligand of human CatSper, progesterone, on Ca2+ signaling in human and boar sperm cells were evaluated side-by-side using a Ca2+ fluorimetric assay measuring changes in intracellular Ca2+. Effects of BADGE on Ca2+ signaling in boar sperm were furthermore assessed by flow cytometry by an independent laboratory. RESULTS: The exact same solutions of BADGE and progesterone induced transient biphasic Ca2+ signals in human sperm cells, but failed to do so in both non-capacitated and capacitated boar sperm cells. BADGE also failed to induce transient biphasic Ca2+ signals in boar sperm cells in the flow cytometric assay. CONCLUSION: BADGE and progesterone failed to induce Ca2+ signals in boar sperm cells. This indicates that the signaling mechanisms leading to activation of CatSper differs between human and boar sperm cells, and suggests that the mode of action by which exposure of boar sperm cells to BADGE can lead to reproductive failure in sows does not involve effects on Ca2+ signaling.

6.
Reprod Domest Anim ; 55(9): 1202-1209, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32614487

ABSTRACT

Reproduction in swine is mostly carried out through artificial insemination (AI). For this purpose, AI studs collect the ejaculates, analyse the sperm quality, dilute and package to produce seminal doses and ship them to sow farms to carry out the AI. Temperature is controlled during the process to avoid sperm damage. Semen is diluted in the extender in a one-step or a two-step process where the second can be isothermic (approximately 32°C) or hypothermic (room temperature 21-22°C). Both techniques are currently performed, and the latter could reduce time and costs, but the literature available comparing the processes is scarce and presents discrepancies. To date, there are no studies about its impact in fertility. This study compared hypothermic two-step dilution (HTSD) and isothermic two-step dilution (ITSD) in laboratory and field trial to elucidate whether HTSD has any effect. Ejaculates from 72 boars in nine AI studs were split and processed with both techniques using a high-performance extender and evaluated in laboratory. Four farms inseminated 345 sows with samples of four of these AI studs, and their fertility and prolificacy were registered. Results show no significant differences between doses prepared by HTSD and ITSD technique, having no impact in laboratory results (percentage of motile sperm, short hypoosmotic swelling test (sHOST) and short osmotic resistance test (sORT), viable sperm, damaged acrosomes, sperm under early apoptosis, high mitochondrial membrane potential (p > .1), fertility (92.2% versus 94.1%, p = .45) or farrowing rate (15.8 ± 0.3 versus 16.1 ± 0.3 p = .46). In conclusion, our results suggest that HTSD of semen on extender could be safely implemented in AI studs under the conditions tested.


Subject(s)
Fertility , Insemination, Artificial/veterinary , Spermatozoa/physiology , Animals , Female , Insemination, Artificial/methods , Male , Semen Analysis/veterinary , Semen Preservation/veterinary , Sperm Motility , Sus scrofa
7.
Anal Bioanal Chem ; 412(24): 6519-6528, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32424797

ABSTRACT

Artificial insemination is common practice in mass livestock farming. Recently, it was shown that chemicals leaching from multilayer plastic bags affect the fertility of boars, although common quality tests did not show any impact on the sperm. It is not clear whether this incidence was a single case or whether it could be a systematic problem. Therefore, we studied six multilayer plastic bags. A total of 49 compounds were found, but most of them were at very low intensity. Nonylphenols in the range of 19-99 µg/g plastic were found. Migration tests using water and 10% ethanol as simulants, to mimic the behavior of semen with the extender, were performed. The most interesting migrants in terms of potential reprotoxicity were identified as nonylphenols. The identification in depth demonstrated the presence of 10 isomers of nonylphenol with a total concentration range between 16 to 58 µg/Kg simulant, among other migrants at lower concentration. The influence of these nonylphenols and their maximum tolerable concentration in direct contact with semen from boars was studied. Motility, viability, mitochondrial activity and acrosomes reacted were significantly affected at 10 mg/Kg of nonylphenols in contact with the sperm, but in vitro penetration rate was significantly decreased with only 2 mg/Kg. Insight into the mode of action is also provided.


Subject(s)
Insemination, Artificial , Phenols/adverse effects , Plastics/adverse effects , Semen/drug effects , Swine/physiology , Animals , Female , Fertility/drug effects , Male , Phenols/analysis , Plastics/chemistry , Semen/cytology , Semen Analysis
8.
Food Chem Toxicol ; 113: 115-124, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29421766

ABSTRACT

Migration from a multilayer plastic material intended for food contact showed that 2,4,7,9-tetramethyl-5-decyne-4,7-diol mixture (surfynol), used as a surfactant in the adhesive employed to build the multilayer, was transferred to water and other food simulants in contact with the plastic. When these multilayer plastics were used for containing seminal doses for artificial insemination, it was found that fertility was seriously damaged in terms of motility, acrosome integrity, mitochondrial activity and penetration capacity in the cells, thus affecting male fertility. Quantitative proteomic analysis of exposed germinal cells demonstrated the inhibition of key proteins involved in the fertilization capacity by affecting the cytoskeleton, sperm motility, the energy machinery and sperm defense mechanisms against oxidation, therefore confirming the surfactant-induced male infertility. These results open up new and interesting perspectives for the study of reprotoxicity caused by different chemicals common in our daily lives. SIGNIFICANCE: This paper demonstrates the toxicity for reproduction of a common surfactant used in food packaging and the scientific reasons why the sperm loses reproductive capacity in presence of this chemical. So, the surfactant affects the male fertility. The surfactant is present in many adhesives used either for building multilayer materials or to glue paper and plastic in food packaging. This is the first time that reprotoxicity is demonstrated for this compound. According to the theoretical approach Threshold of Toxicological Concern (TTC) the compound is highly toxic but experimental data did not exist so far. The study described in this paper and the results obtained open a door to further research in which male infertility caused by chemicals could be demonstrated.


Subject(s)
Fatty Alcohols/toxicity , Fertility/drug effects , Food Packaging , Mammals/physiology , Surface-Active Agents/toxicity , Animals , Female , Male , Sperm Motility/drug effects , Sperm-Ovum Interactions/drug effects , Spermatozoa/drug effects , Swine
9.
Theriogenology ; 80(6): 565-70, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23827823

ABSTRACT

Semen samples collected in 2012 from 1785 boars belonging to five different breeds were recruited from the quality control laboratory of Magapor SL, Spain. These samples came from 43 boar studs and resulted from diluting the ejaculates in commercial semen extenders. Evaluation of the semen sample characteristics (color, smell, pH, osmolality, concentration, motility of sperm cells, agglutination, acrosome integrity, short hypoosmotic swelling test, and abnormal forms) revealed that they met the international standards. The samples were also tested for the presence of aerobic bacterial contamination. In the present study, 14.73% (n = 263) of the semen samples were contaminated above 3 × 10(2) colony-forming units/mL with at least one type of bacteria. The Enterobacteriaceae family was by far the major contaminant, being present in 40.68% of the contaminated samples (n = 107). Bacterial strains of the Enterobacteriaceae family isolated from boar semen samples were in order of incidence (percentage of the contaminated samples): Serratia marcescens (12.55%), Klebsiella oxytoca (11.79%), Providencia stuartii (9.12%), Morganella morganii (3.80%), Proteus mirabilis (1.90%), and Escherichia coli (1.52%). We have seen that the presence in semen samples of S. marcescens, K. oxytoca, M. morganii, or P. mirabilis, but not P. stuartii or E. coli, was negatively associated with sperm motility (P < 0.05). The mean sperm concentration (P < 0.05), the mean percentage of spermatozoa with curled tails after the short hypoosmotic swelling test (P < 0.01), and the incidence of morphologically normal acrosomes (P < 0.05) were also lower in semen samples infected with M. morganii compared with uninfected ones. Moreover, P. mirabilis was negatively associated with the presence of abnormal forms. Thus, on the basis of the pathological effects that some of these strains may have on boar sperm quality, bacterial contamination should always be examined in semen samples prepared for artificial insemination.


Subject(s)
Enterobacteriaceae Infections/complications , Enterobacteriaceae/physiology , Semen Analysis/veterinary , Semen/microbiology , Swine Diseases/microbiology , Animals , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/pathogenicity , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/pathology , Escherichia coli/isolation & purification , Incidence , Insemination, Artificial , Male , Semen Analysis/statistics & numerical data , Swine/microbiology , Swine Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...