Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 29(3): 919-930, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37749692

ABSTRACT

We measure the mean inner potential (MIP) of hematite, α-Fe2O3, using electron holography and transmission electron microscopy. Since the MIP is sensitive to valence electrons, we propose its use as a chemical bonding parameter for solids. Hematite can test the sensitivity of the MIP as a bonding parameter because of the Morin magnetic phase transition. Across this transition temperature, no change in the corundum crystal structure can be distinguished, while a change in hybridized Fe-3d and O-2p states was reported, affecting ionic bonding. For a given crystallographic phase, the change in the MIP with temperature is expected to be minor due to thermal expansion. Indeed, we measure the temperature dependence in corundum α-Al2O3(112¯0) between 95 and 295 K showing a constant MIP value of ∼16.8 V within the measurement accuracy of 0.45 V. Thus, our objectives are as follows: measure the MIP of hematite as a function of temperature and examine the sensitivity of the MIP as a bonding parameter for crystals. Measured MIPs of α-Fe2O3(112¯0) above the Morin transition are equal, 17.85 ± 0.50 V, 17.93 ± 0.50 V, at 295 K, 230 K, respectively. Below the Morin transition, at 95 K, a significant reduction of ∼1.3 V is measured to 16.56 ± 0.46 V. We show that this reduction follows charge redistribution resulting in increased ionic bonding.

2.
Ultramicroscopy ; 198: 18-25, 2019 03.
Article in English | MEDLINE | ID: mdl-30634077

ABSTRACT

The mean inner potential (MIP) of a single crystal α-Al2O3 sapphire was measured using off-axis electron holography. To measure the MIP, we use mechanically polished wedge specimens for transmission electron microscopy (TEM). This approach also enabled us to measure the plasmon mean free path for inelastic scattering (IMFP). The wedge specimen, chosen here at an angle of approximately 45°, allows to determine the MIP by measuring the gradient of phase variations of the reconstructed electron wave over extended regions across the sample. The angle of the wedge was measured to an accuracy of better than 1° by two methods: first, perpendicular sectioning in a focused ion beam for direct measurement by TEM and second, by a non-destructive approach of confocal optical microscopy. The validity of this methodology was examined on a single crystal Si(001) sample showing that the mechanically polished wedge approach can be applied to a wide range of materials. Our measurements concluded that the MIP of sapphire is V0 = 16.90 ±â€¯0.36 V. Furthermore, the IMFP of sapphire was measured at 136 ±â€¯2 nm for 197 keV electrons with a collection angle of 18mrad. The measured MIP of sapphire reflects its degree of ionicity, which lies between theoretical calculations based on electron scattering factors of charged and neutral isolated atoms obtained by Dirac-Fock calculations. Our MIP measurements tend to the expected value for this predominantly ionic material. To account for chemical bonding and the role of the crystallographic plane at the surface of the sample, we compared the experimental measurements to density-functional-theory calculations of the MIP. Calculations of α-Al2O3 slabs cut along (0001) and (1-100) planes obtained MIP values of 15.7 V and 16.7 V, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...