Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622339

ABSTRACT

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Subject(s)
Coffea , Coffea/genetics , Coffee , Genome, Plant/genetics , Metagenomics , Plant Breeding
2.
Sci Rep ; 13(1): 14377, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658061

ABSTRACT

Single-cell technologies have revolutionised biological research and applications. As they continue to evolve with multi-omics and spatial resolution, analysing single-cell datasets is becoming increasingly complex. For biologists lacking expert data analysis resources, the problem is even more crucial, even for the simplest single-cell transcriptomics datasets. We propose ShIVA, an interface for the analysis of single-cell RNA-seq and CITE-seq data specifically dedicated to biologists. Intuitive, iterative and documented by video tutorials, ShIVA allows biologists to follow a robust and reproducible analysis process, mostly based on the Seurat v4 R package, to fully explore and quantify their dataset, to produce useful figures and tables and to export their work to allow more complex analyses performed by experts.


Subject(s)
Data Analysis , Single-Cell Gene Expression Analysis , Humans , Gene Expression Profiling , Health Personnel , Multiomics
3.
J Exp Med ; 220(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37624388

ABSTRACT

Mice with a loss-of-function mutation in the LAT adaptor (LatY136F) develop an autoimmune and type 2 inflammatory disorder called defective LAT signalosome pathology (DLSP). We analyzed via single-cell omics the trajectory leading to LatY136F DLSP and the underlying CD4+ T cell diversification. T follicular helper cells, CD4+ cytotoxic T cells, activated B cells, and plasma cells were found in LatY136F spleen and lung. Such cell constellation entailed all the cell types causative of human IgG4-related disease (IgG4-RD), an autoimmune and inflammatory condition with LatY136F DLSP-like histopathological manifestations. Most previously described T cell-mediated autoimmune manifestations require persistent TCR input. In contrast, following their first engagement by self-antigens, the autoreactive TCR expressed by LatY136F CD4+ T cells hand over their central role in T cell activation to CD28 costimulatory molecules. As a result, all subsequent LatY136F DLSP manifestations, including the production of autoantibodies, solely rely on CD28 engagement. Our findings elucidate the etiology of the LatY136F DLSP and qualify it as a model of IgG4-RD.


Subject(s)
Immunoglobulin G4-Related Disease , Humans , Animals , Mice , CD28 Antigens , Autoantibodies , Autoantigens , Receptors, Antigen, T-Cell
4.
J Exp Med ; 218(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33125054

ABSTRACT

To determine the respective contribution of the LAT transmembrane adaptor and CD5 and CD6 transmembrane receptors to early TCR signal propagation, diversification, and termination, we describe a CRISPR/Cas9-based platform that uses primary mouse T cells and permits establishment of the composition of their LAT, CD5, and CD6 signalosomes in only 4 mo using quantitative mass spectrometry. We confirmed that positive and negative functions can be solely assigned to the LAT and CD5 signalosomes, respectively. In contrast, the TCR-inducible CD6 signalosome comprised both positive (SLP-76, ZAP70, VAV1) and negative (UBASH3A/STS-2) regulators of T cell activation. Moreover, CD6 associated independently of TCR engagement to proteins that support its implication in inflammatory pathologies necessitating T cell transendothelial migration. The multifaceted role of CD6 unveiled here accounts for past difficulties in classifying it as a coinhibitor or costimulator. Congruent with our identification of UBASH3A within the CD6 signalosome and the view that CD6 constitutes a promising target for autoimmune disease treatment, single-nucleotide polymorphisms associated with human autoimmune diseases have been found in the Cd6 and Ubash3a genes.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Adaptor Proteins, Signal Transducing/immunology , Animals , Autoimmune Diseases/immunology , Base Sequence , Female , Inflammation/immunology , Mice , Mice, Inbred C57BL , Polymorphism, Single Nucleotide/immunology , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...