Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 38(34): 7047-55, 1999 Dec 01.
Article in English | MEDLINE | ID: mdl-18324249

ABSTRACT

We built a large-area domain-engineered pyroelectric radiometer with high spatial and spectral response uniformity that is an excellent primary transfer standard for measurements in the near- and the mid-infrared wavelength regions. The domain engineering consisted of inverting the spontaneous polarization over a 10-mm-diameter area in the center of a uniformly poled, 15.5 mm x 15.5 mm square, 0.25-mm-thick LiNbO(3) plate. Gold black was used as the optical absorber on the detector surface, and an aperture was added to define the optically sensitive detector area. Our results indicate that we significantly reduced the acoustic sensitivity without loss of optical sensitivity. The detector noise equivalent power was not exceptionally low but was nearly constant for different acoustic backgrounds. In addition, the detector's spatial-response uniformity variation was less than 0.1% across the 7.5-mm-diameter aperture, and reflectance measurements indicated that the gold-black coating was spectrally uniform within 2%, from 800 to 1800 nm. Other detailed evaluations of the detector include detector responsivity as a function of temperature, electrical frequency response, angular response, and field of view.

2.
Appl Opt ; 37(19): 4210-2, 1998 Jul 01.
Article in English | MEDLINE | ID: mdl-18285864

ABSTRACT

Using electric-field poling at room temperature, we selectively reversed the direction of the spontaneous polarization in a 200-mum-thick, z-cut LiNbO(3) electret to produce a bicell pyroelectric detector. The detector required only a single set of electrodes, one electrode on the front surface and one on the back surface. Microphonic noise that is typical of monocell pyroelectric detectors is reduced in the present device. Our spatial uniformity data indicate that the optical response of one half of the bicell detector area was equal to and opposite the other half within 1.2%. The microphonic suppression of the bicell pyroelectric detector was less than -36 dB from 10 to 50 Hz and less than -118 dB at 35 Hz of that of a reference monocell pyroelectric detector. The substrate thickness is significantly greater than those of other domain-engineered pyroelectric detector designs and allows us to build practical, large-area detectors for radiometric applications.

3.
Opt Lett ; 19(22): 1849, 1994 Nov 15.
Article in English | MEDLINE | ID: mdl-19855674
4.
Opt Lett ; 18(4): 281, 1993 Feb 15.
Article in English | MEDLINE | ID: mdl-19802110
5.
Opt Lett ; 17(22): 1578-80, 1992 Nov 15.
Article in English | MEDLINE | ID: mdl-19798251

ABSTRACT

Waveguide lasers operating near 1092 and 1076 nm were fabricated in Z-cut Nd-Ti codiffused LiTaO(3). The Nd diffusion was at 14000 degrees C for 120 h. Samples from two wafers were examined. The Nd film starting thickness was 7 nm in wafer 1 and 15 nm in wafer 2. Ti stripes, 8-15 microm wide, were diffused at 1500 degrees C for 4 h for wafer 1 (130-nm stripe thickness) and 2 h forwafer 2 (100-nm stripe thickness). Pumping was at 750 nm. Threshold occurred at 330 mW of absorbedpump power for the best waveguides from wafer 1 and100 mW for the best waveguides from wafer 2. The slope efficiency of the latter was 0.07%.

SELECTION OF CITATIONS
SEARCH DETAIL
...