Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharmacol ; 75(3): 577-88, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19047481

ABSTRACT

Activators of M(1) muscarinic acetylcholine receptors (mAChRs) may provide novel treatments for schizophrenia and Alzheimer's disease. Unfortunately, the development of M(1)-active compounds has resulted in nonselective activation of the highly related M(2) to M(5) mAChR subtypes, which results in dose-limiting side effects. Using a functional screening approach, we identified several novel ligands that potentiated agonist activation of M(1) with low micromolar potencies and induced 5-fold or greater leftward shifts of the acetylcholine (ACh) concentration-response curve. These ligands did not compete for binding at the ACh binding site, indicating that they modulate receptor activity by binding to allosteric sites. The two most selective compounds, cyclopentyl 1,6-dimethyl-4-(6-nitrobenzo[d][1,3]-dioxol-5-yl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (VU0090157) and (E)-2-(4-ethoxyphenylamino)-N'-((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide (VU0029767), induced progressive shifts in ACh affinity at M(1) that were consistent with their effects in a functional assay, suggesting that the mechanism for enhancement of M(1) activity by these compounds is by increasing agonist affinity. These compounds were strikingly different, however, in their ability to potentiate responses at a mutant M(1) receptor with decreased affinity for ACh and in their ability to affect responses of the allosteric M(1) agonist, 1-[1'-(2-tolyl)-1,4'-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one. Furthermore, these two compounds were distinct in their abilities to potentiate M(1)-mediated activation of phosphoinositide hydrolysis and phospholipase D. The discovery of multiple structurally distinct positive allosteric modulators of M(1) is an exciting advance in establishing the potential of allosteric modulators for selective activation of this receptor. These data also suggest that structurally diverse M(1) potentiators may act by distinct mechanisms and differentially regulate receptor coupling to downstream signaling pathways.


Subject(s)
Muscarinic Agonists/chemistry , Muscarinic Agonists/metabolism , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Binding, Competitive/drug effects , Binding, Competitive/physiology , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Humans , Muscarinic Agonists/pharmacology , Rats
2.
Mol Pharmacol ; 74(5): 1345-58, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18664603

ABSTRACT

Parkinson's disease (PD) is caused by the death of dopamine neurons in the basal ganglia and results in motor symptoms such as tremor and bradykinesia. Activation of metabotropic glutamate receptor 4 (mGluR4) has been shown to modulate neurotransmission in the basal ganglia and results in antiparkinsonian effects in rodent PD models. N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) is a positive allosteric modulator (PAM) of mGluR4 that has been used to further validate the role of mGluR4 in PD, but the compound suffers from a lack of selectivity, relatively low potency, and poor solubility. Via high-throughput screening, we discovered more than 400 novel PAMs of mGluR4. Compounds derived from a novel chemical scaffold were characterized in vitro at both rat and human mGluR4 using two distinct assays of mGluR4 function. The lead compound was approximately 8-fold more potent than PHCCC, enhanced the potency of glutamate at mGluR4 by 8-fold, and did not show any significant potentiator or antagonist activity at other mGluR subtypes. Resolution of the regioisomers of the lead revealed that the cis regioisomer, (+/-)-cis-2-(3,5-dichlorphenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041), contained the majority of the mGluR4 PAM activity and also exhibited partial agonist activity at mGluR4 at a site that was distinct from the glutamate binding site, suggesting that this compound is a mixed allosteric agonist/PAM of mGluR4. VU0155041 was soluble in an aqueous vehicle, and intracerebroventricular administration of 31 to 316 nmol of VU0155041 dose-dependently decreased haloperidol-induced catalepsy and reserpine-induced akinesia in rats. These exciting results provide continued support for mGluR4 as a therapeutic target in PD.


Subject(s)
Antiparkinson Agents/therapeutic use , Parkinson Disease/drug therapy , Receptors, Metabotropic Glutamate/drug effects , Allosteric Regulation , Animals , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/chemistry , Antiparkinson Agents/pharmacology , CHO Cells , Corpus Striatum/drug effects , Cricetinae , Cricetulus , Humans , In Vitro Techniques , Injections, Intraventricular , Male , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...