Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 117(2): 185-98, 2008 May 08.
Article in English | MEDLINE | ID: mdl-18384986

ABSTRACT

People in the Indian region often apply shankhapushpi and vishnukranti, two Sanskrit-based common names, to Evolvulus alsinoides. These are pre-European names that are applied to a medicinal American species transported into the area. The period of introduction is uncertain, but probably took place in the 1500s or 1600s. Examination of relationships of Evolvulus alsinoides, geographic distribution, its names in Asia, medical uses, and chemical and laboratory analysis indicates that the alien plant was adopted, given an ancient Indian name, and incorporated into some Old World pharmacopoeias. The herb apparently was included in medicines because it not only reminded people of certain aspects of their gods and goddesses, but also because the chemicals it contained were useful against some maladies.


Subject(s)
Convolvulaceae/chemistry , Animals , Convolvulaceae/classification , History, 17th Century , History, 18th Century , History, 20th Century , Humans , Phytotherapy/history , Terminology as Topic
2.
Phytochemistry ; 66(4): 469-80, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15694454

ABSTRACT

An extended GC-MS study of 129 convolvulaceous species belonging to 29 genera (all 12 tribes) including the results of a previous survey (65 spp.) revealed the occurrence of one to six polyhydroxy alkaloids of the nortropane type (calystegines) in 62 species belonging to 22 genera of all tribes except the unique parasitic Cuscuteae. The large genus Ipomoea turned out to comprise calystegine-positive species in at least eight out of ten sections checked. The number of the calystegines used as reference compounds has been increased from seven (previous survey) to 11 (present study). Furthermore, the results concerning these additional four alkaloids could also be completed for all species of the previous survey. The plant material (epigeal vegetative parts and/or roots, flowers, fruits/seeds) was obtained from collections in the wild from a wide range of tropical, subtropical, and temperate locations of all continents as well as from cultivation in the greenhouse. All plant organs turned out to be potential locations for the occurrence of these metabolites though they are detectable often only in certain organs of a given species. Three genera (Cuscuta, Operculina, Polymeria) might have lost the ability to synthesize these plesiomorphic characters in the course of the evolution since the examination of several different organs and/or provenances of five species each failed to show calystegines as constituents. Nevertheless, the present data clearly demonstrate that the occurrence of calystegines is an almost consistent trait in the Convolvulaceae in principle, from basal to most advanced tribes.


Subject(s)
Alkaloids/analysis , Alkaloids/chemistry , Convolvulaceae/chemistry , Convolvulaceae/classification , Biomarkers/analysis , Biomarkers/chemistry , Gas Chromatography-Mass Spectrometry , Methylation , Molecular Structure , Plant Extracts/chemistry , Tropanes
3.
Phytochemistry ; 66(2): 223-31, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15652579

ABSTRACT

A comprehensive GC-MS analysis of 8 Ipomoea species belonging to the subgenus Quamoclit, section Mina revealed that the members of this taxon form combinations of two necine bases with rare necic acids resulting in unique pyrrolizidine alkaloids. The occurrence and diversity of these metabolites show remarkable variations: Some species, especially Ipomoea hederifolia and Ipomoea lobata, are able to synthesize a large number of alkaloids whereas others, especially Ipomoea coccinea and Ipomoea quamoclit, are poor synthesizers with only a few compounds. However, these metabolites are apparently chemotaxonomic markers of this infrageneric taxon in general. They represent either esters of (-)-platynecine (altogether 48 ipangulines and 4 further esters including results of a previous study) or esters of (-)-trachelanthamidine, an additional novel structural type called minalobines (altogether 21 alkaloids). Both types are characterized by section-specific rare necic acids, e.g., ipangulinic/isoipangulinic acid, phenylacetic acid. The alkaloids of Ipomoea cholulensis, I. coccinea, I. hederifolia, Ipomoea neei, and Ipomoea quamoclit were mono and diesters of platynecine. Minalobines turned out to be metabolites of I. lobata (Cerv.) Thell. (syn.: Mina lobata Cerv.) lacking ipangulines. The major alkaloid of this species, minalobine R, has been isolated and identified as 9-O-(threo-2-hydroxy-2-methyl-3-phenylacetoxy-butyryl)-(-)-trachelanthamidine on the basis of spectral data. Apparently only two of the species included in this study, Ipomoea cristulata and Ipomoea sloteri, are able to synthesize both, ipangulines as well as minalobines. Minalobine O could be isolated as a major alkaloid of I. cristulata, its structure has been established as 9-O-(erythro-2-hydroxy-2-methyl-3-tigloyloxy-butyryl)-(-)-trachelanthamidine on the basis of spectral data.


Subject(s)
Ipomoea/chemistry , Ipomoea/genetics , Pyrrolizidine Alkaloids/analysis , Gas Chromatography-Mass Spectrometry , Ipomoea/classification , Molecular Structure , Pyrrolizidine Alkaloids/chemistry , Pyrrolizidine Alkaloids/isolation & purification
4.
Mol Phylogenet Evol ; 30(3): 623-32, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15012943

ABSTRACT

Phylogenetic relationships of 13 accessions and a cultivar representing the sweetpotato, Ipomoea batatas (L.) Lam., and its wild progenitors, were investigated using the nucleotide sequence variation of a nuclear-encoded beta-amylase gene. A 1.1-1.3 kb fragment of the gene spanning two exons separated by a long intron was PCR-amplified, cloned, and sequenced. Exon sequences proved highly conservative, while intron sequences yielded large differences. Intron analyses grouped species in a phylogenetic context according to the presence of two genome types: A and B. These groups are consistent with results of previous analyses, save for the novel placement of I. tiliacea, among the A-genome species. Sequences specific to both A and B genome species have been identified. Exon sequences indicate that I. ramosissima and I. umbraticola are quite different from other A-genome species. Placement of I. littoralis is questionable; its intron is similar to other B-genome species, but its exons are quite different. Exon evolution indicates that the B-genome has evolved faster than the A-genome. Interspecific intron and exon variation indicates I. trifida, I. tabascana, and I. batatas form a monophyletic group.


Subject(s)
Cell Nucleus/enzymology , Ipomoea batatas/genetics , Sequence Analysis, DNA , beta-Amylase/genetics , Cell Nucleus/genetics , Evolution, Molecular , Exons , Genes, Plant , Genome , Introns , Models, Genetic , Phylogeny , Polymerase Chain Reaction
5.
Am J Bot ; 90(8): 1144-52, 2003 Aug.
Article in English | MEDLINE | ID: mdl-21659214

ABSTRACT

The effect of culture system and population source on sexual expression and sporophyte production was examined for two invasive fern species in Florida, USA, Lygodium microphyllum and L. japonicum (Schizaeaceae). Both species are currently spreading through Florida. Long-distance dispersal of ferns is thought to rely on successful intragametophytic selfing. Given the rate of spread observed in both Lygodium species, we hypothesized that both species are capable of intragametophytic selfing. To test this hypothesis, gametophytes of both species were grown in vitro as isolates, pairs, and groups. Both species were capable of intragametophytic selfing; 78% of L. microphyllum isolates produced sporophytes and over 90% of the L. japonicum isolates produced sporophytes. Lygodium microphyllum also displayed the ability to reproduce via intergametophytic crossing, facilitated by an antheridiogen pheromone. Sporophyte production was rapid across mating systems for both species, an advantage in Florida's wet and dry seasonal cycles. The high intragametophytic selfing rate achieved by both species has likely facilitated their ability to colonize and spread through Florida. The mixed mating system observed in L. microphyllum appears to give this species the ability to invade distant habitats and then adapt to local conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...