Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 17(6): 1391-1402, 2019 06.
Article in English | MEDLINE | ID: mdl-30862685

ABSTRACT

CDH1 (also known as E-cadherin), an epithelial-specific cell-cell adhesion molecule, plays multiple roles in maintaining adherens junctions, regulating migration and invasion, and mediating intracellular signaling. Downregulation of E-cadherin is a hallmark of epithelial-to-mesenchymal transition (EMT) and correlates with poor prognosis in multiple carcinomas. Conversely, upregulation of E-cadherin is prognostic for improved survival in sarcomas. Yet, despite the prognostic benefit of E-cadherin expression in sarcoma, the mechanistic significance of E-cadherin in sarcomas remains poorly understood. Here, by combining mathematical models with wet-bench experiments, we identify the core regulatory networks mediated by E-cadherin in sarcomas, and decipher their functional consequences. Unlike carcinomas, E-cadherin overexpression in sarcomas does not induce a mesenchymal-to-epithelial transition (MET). However, E-cadherin acts to reduce both anchorage-independent growth and spheroid formation of sarcoma cells. Ectopic E-cadherin expression acts to downregulate phosphorylated CREB1 (p-CREB) and the transcription factor, TBX2, to inhibit anchorage-independent growth. RNAi-mediated knockdown of TBX2 phenocopies the effect of E-cadherin on CREB levels and restores sensitivity to anchorage-independent growth in sarcoma cells. Beyond its signaling role, E-cadherin expression in sarcoma cells can also strengthen cell-cell adhesion and restricts spheroid growth through mechanical action. Together, our results demonstrate that E-cadherin inhibits sarcoma aggressiveness by preventing anchorage-independent growth. IMPLICATIONS: We highlight how E-cadherin can restrict aggressive behavior in sarcomas through both biochemical signaling and biomechanical effects.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Cell Proliferation/physiology , Sarcoma/metabolism , Signal Transduction/physiology , Cell Line, Tumor , Down-Regulation/physiology , Epithelial-Mesenchymal Transition/physiology , Humans , Prognosis , Up-Regulation/physiology
2.
Adv Drug Deliv Rev ; 125: 132-142, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29366804

ABSTRACT

Methods enabling the isolation, detection, and characterization of circulating tumor cells (CTCs) in blood have clear potential to facilitate precision medicine approaches in patients with cancer, not only for prognostic purposes but also for prediction of the benefits of specific therapies in oncology. However, current CTC assays, which capture CTCs based on expression of epithelial cell adhesion molecule (EpCAM), fail to capture cells from de-differentiated tumors and carcinomas undergoing loss of the epithelial phenotype during the invasion/metastatic process. To address this limitation, many groups are developing non-EpCAM based CTC assays that incorporate nanotechnology to improve test sensitivity for rare but important cells that may otherwise go undetected, and therefore may improve upon clinical utility. In this review, we outline emerging non-EpCAM based CTC assays utilizing nanotechnology approaches for CTC capture or characterization, including dendrimers, magnetic nanoparticles, gold nanoparticles, negative selection chip or software-based on-slide methods, and nano-scale substrates. In addition, we address challenges that remain for the clinical translation of these platforms.


Subject(s)
Nanoparticles/chemistry , Nanotechnology , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/analysis , Epithelial Cell Adhesion Molecule/metabolism , Humans , Neoplastic Cells, Circulating/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...