Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2155, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37059710

ABSTRACT

Acute myeloid leukemia (AML) is a genetically heterogeneous, aggressive hematological malignancy induced by distinct oncogenic driver mutations. The effect of specific AML oncogenes on immune activation or suppression is unclear. Here, we examine immune responses in genetically distinct models of AML and demonstrate that specific AML oncogenes dictate immunogenicity, the quality of immune response and immune escape through immunoediting. Specifically, expression of NrasG12D alone is sufficient to drive a potent anti-leukemia response through increased MHC Class II expression that can be overcome with increased expression of Myc. These data have important implications for the design and implementation of personalized immunotherapies for patients with AML.


Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/pathology , Oncogenes , Hematologic Neoplasms/genetics
2.
Cell Rep ; 30(8): 2512-2525.e9, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32101732

ABSTRACT

Type I interferons (IFNs) play critical roles in anti-viral and anti-tumor immunity. However, they also suppress protective immune responses in some infectious diseases. Here, we identify type I IFNs as major upstream regulators of CD4+ T cells from visceral leishmaniasis (VL) patients. Furthermore, we report that mice deficient in type I IFN signaling have significantly improved control of Leishmania donovani, a causative agent of human VL, associated with enhanced IFNγ but reduced IL-10 production by parasite-specific CD4+ T cells. Importantly, we identify a small-molecule inhibitor that can be used to block type I IFN signaling during established infection and acts synergistically with conventional anti-parasitic drugs to improve parasite clearance and enhance anti-parasitic CD4+ T cell responses in mice and humans. Thus, manipulation of type I IFN signaling is a promising strategy for improving disease outcome in VL patients.


Subject(s)
Immunity/drug effects , Interferon Type I/pharmacology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Parasites/immunology , Amphotericin B/pharmacology , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Epitopes , Humans , Inflammation/immunology , Inflammation/pathology , Interferon-gamma/pharmacology , Mice, Inbred C57BL , Nitriles , Parasites/drug effects , Pyrazoles/pharmacology , Pyrimidines , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/metabolism , Signal Transduction/drug effects
3.
Leukemia ; 34(4): 1075-1089, 2020 04.
Article in English | MEDLINE | ID: mdl-31732720

ABSTRACT

JAK2V617F is the most common mutation in patients with BCR-ABL negative myeloproliferative neoplasms (MPNs). The eradication of JAK2V617F hematopoietic stem cells (HSCs) is critical for achieving molecular remissions and cure. We investigate the distinct effects of two therapies, ruxolitinib (JAK1/2 inhibitor) and interferon-alpha (IFN-α), on the disease-initiating HSC population. Whereas ruxolitinib inhibits Stat5 activation in erythroid progenitor populations, it fails to inhibit this same pathway in HSCs. In contrast, IFN-α has direct effects on HSCs. Furthermore, STAT1 phosphorylation and pathway activation is greater after IFN-α stimulation in Jak2V617F murine HSCs with increased induction of reactive oxygen species, DNA damage and reduction in quiescence after chronic IFN-α treatment. Interestingly, ruxolitinib does not block IFN-α induced reactive oxygen species and DNA damage in Jak2V617F murine HSCs in vivo. This work provides a mechanistic rationale informing how pegylated IFN-α reduces JAK2V617F allelic burden in the clinical setting and may inform future clinical efforts to combine ruxolitinib with pegylated IFN-α in patients with MPN.


Subject(s)
Hematopoietic Stem Cells/drug effects , Interferon-alpha/pharmacology , Janus Kinase 2/genetics , Mutation , Myeloproliferative Disorders/drug therapy , Pyrazoles/pharmacology , STAT1 Transcription Factor/metabolism , Animals , Antiviral Agents/pharmacology , Cell Proliferation , Cells, Cultured , Drug Therapy, Combination , Female , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Nitriles , Pyrimidines , STAT1 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...