Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Clin Microbiol Infect ; 28(10): 1353-1358, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35597505

ABSTRACT

OBJECTIVES: To determine prevalence, incidence, and factors associated with Pseudomonas aeruginosa (PA) intestinal carriage in residents of long-term care facilities (LTCFs) and to understand the population structure of this pathogen in LTCFs from two European countries. METHODS: We assessed the prevalence of PA intestinal carriage and the incidence of acquisition by collecting fecal samples from 403 residents of 20 LTCFs. We collected 289 environmental samples from sinks and drinking water. Factors associated with carriage and acquisition of intestinal PA were identified. All PA isolates had their antibiotic phenotypic resistance profile determined and their genome sequenced, from which we assessed the population structure of the collection and identified resistance determinants. RESULTS: We found a high proportion of residents with PA intestinal carriage (51.6%) over the entire study period. Over the follow-up period, 28.6% of the residents acquired intestinal PA. Older age (OR, 1.29; 95% CI, 1.09-1.52; p = 0.002), urinary incontinence (OR, 2.56; 95% CI, 1.37-4.88; p = 0.003), and male sex (OR, 2.55; 95% CI, 1.05-6.18; p = 0.039) were associated with higher probability of carriage. Wheelchair usage (OR, 4.56; 95% CI, 1.38-15.05; p = 0.013) and a body mass index >25 (OR, 3.71; 95% CI, 1.17-11.82; p = 0.026) were associated with higher risk of PA acquisition. Population structure of our isolates was mainly non-clonal with 112 different STs among the 241 isolates. Most represented STs were high risk clones ST253 (n = 26), ST17 (n = 11), ST244 (n = 11), ST309 (n = 10), and ST395 (n = 10). Most PA isolates (86.3%) were susceptible to antibiotics, with no acquired genes conferring resistance to antipseudomonal agents. DISCUSSION: We found an unexpected high prevalence of PA intestinal carriage in LTCF residents mainly associated with individual-level factors. Our study revealed a polyclonal PA population structure suggesting that individual acquisition is more frequent than resident-to-resident transmission.


Subject(s)
Drinking Water , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Humans , Long-Term Care , Male , Prevalence , Pseudomonas aeruginosa/genetics
2.
Biology (Basel) ; 11(2)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35205164

ABSTRACT

The complex interplay of a pathogen with its virulence and fitness factors, the host's immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001.

3.
Front Microbiol ; 12: 628879, 2021.
Article in English | MEDLINE | ID: mdl-33708185

ABSTRACT

The BAM complex in Escherichia coli is composed of five proteins, BamA-E. BamA and BamD are essential for cell viability and are required for the assembly of ß-barrel outer membrane proteins. Consequently, BamA and BamD are indispensable for secretion via the classical autotransporter pathway (Type 5a secretion). In contrast, BamB, BamC, and BamE are not required for the biogenesis of classical autotransporters. Recently, we demonstrated that TamA, a homologue of BamA, and its partner protein TamB, were required for efficient secretion of proteins via the classical autotransporter pathway. The trimeric autotransporters are a subset of the Type 5-secreted proteins. Unlike the classical autotransporters, they are composed of three identical polypeptide chains which must be assembled together to allow secretion of their cognate passenger domains. In contrast to the classical autotransporters, the role of the Bam and Tam complex components in the biogenesis of the trimeric autotransporters has not been investigated fully. Here, using the Salmonella enterica trimeric autotransporter SadA and the structurally similar YadA protein of Yersinia spp., we identify the importance of BamA and BamD in the biogenesis of the trimeric autotransporters and reveal that BamB, BamC, BamE, TamA and TamB are not required for secretion of functional passenger domain on the cell surface. IMPORTANCE: The secretion of trimeric autotransporters (TAA's) has yet to be fully understood. Here we show that efficient secretion of TAAs requires the BamA and D proteins, but does not require BamB, C or E. In contrast to classical autotransporter secretion, neither trimeric autotransporter tested required TamA or B proteins to be functionally secreted.

4.
Clin Infect Dis ; 73(9): e2625-e2634, 2021 11 02.
Article in English | MEDLINE | ID: mdl-32589701

ABSTRACT

BACKGROUND: Asymptomatic C. difficile colonization is believed to predispose to subsequent C. difficile infection (CDI). While emerging insights into the role of the commensal microbiota in mediating colonization resistance against C. difficile have associated CDI with specific microbial components, corresponding prospectively collected data on colonization with C. difficile are largely unavailable. METHODS: C. difficile status was assessed by GDH EIA and real-time PCR targeting the toxin A (tcdA) and B (tcdB) genes. 16S V3 and V4 gene sequencing results from fecal samples of patients tested positive for C. difficile were analyzed by assessing alpha and beta diversity, LefSe, and the Piphillin functional inference approach to estimate functional capacity. RESULTS: 1506 patients were recruited into a prospective observational study (DRKS00005335) upon admission into one of five academic hospitals. 936 of them provided fecal samples on admission and at discharge and were thus available for longitudinal analysis. Upon hospital admission, 5.5% (83/1506) and 3.7% (56/1506) of patients were colonized with toxigenic (TCD) and non-toxigenic C. difficile (NTCD), respectively. During hospitalization, 1.7% (16/936) acquired TCD. Risk factors for acquisition of TCD included pre-existing lung diseases, lower GI endoscopy and antibiotics. Species protecting against hospital-related C. difficile acquisition included Gemmiger spp., Odoribacter splanchnicus, Ruminococcus bromii and other Ruminococcus spp. Metagenomic pathway analysis identified steroid biosynthesis as the most underrepresented metabolic pathway in patients who later acquire C. difficile colonization. CONCLUSIONS: Gemmiger spp., Odoribacter splanchnicus, Ruminococcus bromii and other Ruminococci were associated with a decreased risk of C. difficile acquisition. CLINICAL TRIALS REGISTRATION: DRKS00005335.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Microbiota , Bacterial Toxins/genetics , Bacteroidetes , Clostridioides , Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Feces , Humans , Prospective Studies , Risk Factors , Ruminococcus
5.
Article in English | MEDLINE | ID: mdl-31818817

ABSTRACT

With the aim to identify potential new targets to restore antimicrobial susceptibility of multidrug-resistant (MDR) Pseudomonas aeruginosa isolates, we generated a high-density transposon (Tn) insertion mutant library in an MDR P. aeruginosa bloodstream isolate (isolate ID40). The depletion of Tn insertion mutants upon exposure to cefepime or meropenem was measured in order to determine the common resistome for these clinically important antipseudomonal ß-lactam antibiotics. The approach was validated by clean deletions of genes involved in peptidoglycan synthesis/recycling, such as the genes for the lytic transglycosylase MltG, the murein (Mur) endopeptidase MepM1, the MurNAc/GlcNAc kinase AmgK, and the uncharacterized protein YgfB, all of which were identified in our screen as playing a decisive role in survival after treatment with cefepime or meropenem. We found that the antibiotic resistance of P. aeruginosa can be overcome by targeting usually nonessential genes that turn essential in the presence of therapeutic concentrations of antibiotics. For all validated genes, we demonstrated that their deletion leads to the reduction of ampC expression, resulting in a significant decrease in ß-lactamase activity, and consequently, these mutants partly or completely lost resistance against cephalosporins, carbapenems, and acylaminopenicillins. In summary, the determined resistome may comprise promising targets for the development of drugs that may be used to restore sensitivity to existing antibiotics, specifically in MDR strains of P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , DNA Transposable Elements , Drug Resistance, Multiple, Bacterial/genetics , Pseudomonas aeruginosa/genetics , beta-Lactam Resistance/genetics , Bacterial Proteins/metabolism , Cefepime/pharmacology , Endopeptidases/deficiency , Endopeptidases/genetics , Gene Deletion , Gene Expression Regulation, Bacterial , Glycosyltransferases/deficiency , Glycosyltransferases/genetics , Humans , Meropenem/pharmacology , Microbial Sensitivity Tests , Mutagenesis , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/genetics , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification , beta-Lactamases/genetics , beta-Lactamases/metabolism
6.
Front Microbiol ; 10: 2582, 2019.
Article in English | MEDLINE | ID: mdl-31781074

ABSTRACT

Members of the Enterobacter (E.) cloacae complex have emerged as important pathogens frequently encountered in nosocomial infections. Several outbreaks with E. cloacae complex have been reported in recent years, especially in neonatal units. Fast and reliable strain typing methods are crucial for real-time surveillance and outbreak analysis to detect pathogen reservoirs and transmission routes. The aim of this study was to evaluate the performance of Fourier-transform infrared (FTIR) spectroscopy as a fast method for typing of clinical E. cloacae complex isolates, when whole genome sequencing (WGS) analysis was used as reference. First, the technique was used retrospectively on 24 first isolates of E. cloacae complex strains from neonatal patients and showed good concordance with SNP-based clustering [adjusted rand index (ARI) = 0.818] and with the sequence type (ST) (ARI = 0.801). 29 consecutive isolates from the same patients were shown by WGS analysis to almost always belong to the same SNP cluster as the first isolates, which was only inconsistently recognized by FTIR spectroscopy. Training of an artificial neural network (ANN) with all FTIR spectra from sequenced strains markedly improved the recognition of related and unrelated isolate spectra. In a second step, FTIR spectroscopy was applied on 14 strains during an outbreak with E. cloacae complex and provided fast typing results that were confirmed by WGS analysis. In conclusion, FTIR spectroscopy is a promising tool for strain typing of clinical E. cloacae complex strains. Discriminatory power can be improved by implementing an ANN for spectrum analysis. Due to its low costs and fast turnaround times, the method presents a valuable tool for real-time surveillance as well as outbreak analysis.

7.
BMC Biol ; 17(1): 76, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31533707

ABSTRACT

BACKGROUND: The selection pressure exercised by antibiotic drugs is an important consideration for the wise stewardship of antimicrobial treatment programs. Treatment decisions are currently based on crude assumptions, and there is an urgent need to develop a more quantitative knowledge base that can enable predictions of the impact of individual antibiotics on the human gut microbiome and resistome. RESULTS: Using shotgun metagenomics, we quantified changes in the gut microbiome in two cohorts of hematological patients receiving prophylactic antibiotics; one cohort was treated with ciprofloxacin in a hospital in Tübingen and the other with cotrimoxazole in a hospital in Cologne. Analyzing this rich longitudinal dataset, we found that gut microbiome diversity was reduced in both treatment cohorts to a similar extent, while effects on the gut resistome differed. We observed a sharp increase in the relative abundance of sulfonamide antibiotic resistance genes (ARGs) by 148.1% per cumulative defined daily dose of cotrimoxazole in the Cologne cohort, but not in the Tübingen cohort treated with ciprofloxacin. Through multivariate modeling, we found that factors such as individual baseline microbiome, resistome, and plasmid diversity; liver/kidney function; and concurrent medication, especially virostatic agents, influence resistome alterations. Strikingly, we observed different effects on the plasmidome in the two treatment groups. There was a substantial increase in the abundance of ARG-carrying plasmids in the cohort treated with cotrimoxazole, but not in the cohort treated with ciprofloxacin, indicating that cotrimoxazole might contribute more efficiently to the spread of resistance. CONCLUSIONS: Our study represents a step forward in developing the capability to predict the effect of individual antimicrobials on the human microbiome and resistome. Our results indicate that to achieve this, integration of the individual baseline microbiome, resistome, and mobilome status as well as additional individual patient factors will be required. Such personalized predictions may in the future increase patient safety and reduce the spread of resistance. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02058888 . Registered February 10 2014.


Subject(s)
Anti-Bacterial Agents/adverse effects , Ciprofloxacin/adverse effects , Drug Resistance, Microbial , Gastrointestinal Microbiome/drug effects , Plasmids/drug effects , Trimethoprim, Sulfamethoxazole Drug Combination/adverse effects , Anti-Bacterial Agents/therapeutic use , Ciprofloxacin/therapeutic use , Cohort Studies , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Genes, Bacterial/drug effects , Germany , Humans , Longitudinal Studies , Metagenomics/methods , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use
8.
Front Microbiol ; 10: 1742, 2019.
Article in English | MEDLINE | ID: mdl-31440214

ABSTRACT

In this study, we aimed to elucidate a prolonged outbreak of extensively drug-resistant (XDR) Pseudomonas aeruginosa, at two adjacent hospitals over a time course of 4 years. Since all strains exhibited a similar antibiotic susceptibility pattern and carried the carbapenemase gene blaVIM, a monoclonal outbreak was assumed. To shed light on the intra-hospital evolution of these strains over time, whole genome sequence (WGS) analysis of 100 clinical and environmental outbreak strains was employed. Phylogenetic analysis of the core genome revealed the outbreak to be polyclonal, rather than monoclonal as initially suggested. The vast majority of strains fell into one of two major clusters, composed of 27 and 59 strains, and their accessory genome each revealed over 400 and 600 accessory genes, respectively, thus indicating an unexpectedly high structural diversity among phylogenetically clustered strains. Further analyses focused on the cluster with 59 strains, representing the hospital from which both clinical and environmental strains were available. Our investigation clearly shows both accumulation and loss of genes occur very frequently over time, as reflected by analysis of protein enrichment as well as functional enrichment. In addition, we investigated adaptation through single nucleotide polymorphisms (SNPs). Among the genes affected by SNPs, there are a multidrug efflux pump (mexZ) and a mercury detoxification operon (merR) with deleterious mutations, potentially leading to loss of repression with resistance against antibiotics and disinfectants. Our results not only confirm WGS to be a powerful tool for epidemiologic analyses, but also provide insights into molecular evolution during an XDR P. aeruginosa hospital outbreak. Genome mutation unveiled a striking genetic plasticity on an unexpectedly high level, mostly driven by horizontal gene transfer. Our study adds valuable information to the molecular understanding of "real-world" Intra-hospital P. aeruginosa evolution and is a step forward toward more personalized medicine in infection control.

9.
Mol Ther ; 27(11): 1974-1991, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31416777

ABSTRACT

Generated by gram-negative bacteria, lipopolysaccharides (LPSs) are one of the most abundant and potent immunomodulatory substances present in the intestinal lumen. Interaction of agonistic LPS with the host myeloid-differentiation-2/Toll-like receptor 4 (MD-2/TLR4) receptor complex results in nuclear factor κB (NF-κB) activation, followed by the robust induction of pro-inflammatory immune responses. Here we have isolated LPS from a common gut commensal, Bacteroides vulgatus mpk (BVMPK), which provides only weak agonistic activity. This weak agonistic activity leads to the amelioration of inflammatory immune responses in a mouse model for experimental colitis, and it was in sharp contrast to strong agonists and antagonists. In this context, the administration of BVMPK LPS into mice with severe intestinal inflammation re-established intestinal immune homeostasis within only 2 weeks, resulting in the clearance of all symptoms of inflammation. These inflammation-reducing properties of weak agonistic LPS are grounded in the induction of a special type of endotoxin tolerance via the MD-2/TLR4 receptor complex axis in intestinal lamina propria CD11c+ cells. Thus, weak agonistic LPS represents a promising agent to treat diseases involving pathological overactivation of the intestinal immune system, e.g., in inflammatory bowel diseases.


Subject(s)
Homeostasis/immunology , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Lipopolysaccharides/immunology , Animals , Biomarkers , CD11c Antigen/metabolism , Colitis/etiology , Colitis/metabolism , Colitis/pathology , Disease Models, Animal , Gastrointestinal Microbiome/immunology , Homeostasis/drug effects , Humans , Inflammatory Bowel Diseases/diagnostic imaging , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/drug effects , Lipid A/immunology , Lipopolysaccharides/pharmacology , Mice , Mice, Knockout , Positron-Emission Tomography
10.
Int J Med Microbiol ; 309(5): 344-350, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31178419

ABSTRACT

Type III secretion systems (T3SS) play a crucial role for virulence in many Gram-negative bacteria. After tight bacterial contact to host cells, the T3SS injects effector proteins into the host cells, which leads to cell invasion, tissue destruction and/or immune evasion. Over the last decade several attempts were made to characterize the host-cell interactions which precede and determine effector protein injection during infection. The development of the TEM-ß-lactamase reporter was an important breakthrough to achieve this goal. By this means it was demonstrated that during infection with many Gram-negative pathogens such as Salmonella, Pseudomonas or Yersinia the main targets of T3SS are leukocytes of the myeloid lineage such as neutrophils, macrophages or dendritic cells. This is due to the recruitment of these cells to the site of infection, but also due to the specific interplay between bacterial and host cells. Comprehensive studies on Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis effector translocation show that adhesins such as Invasin (Inv), Yersinia adhesin A (YadA) and attachment and invasion locus (Ail) are critical for effector translocation. Here, mainly the complex interaction of YadA and Ail with various host cell receptor repertoires on leukocytes and the modulatory effects of serum factors direct effector translocation predominantly towards myeloid cells. The current understanding suggests that mostly protein based interactions between bacteria and host determine host cell specific effector translocation during Yersinia infection. However, for Shigella dysenteriae infection it was shown that glycan-glycan interactions can also play a critical role for the adhesion preceding effector translocation. In addition, the Shigella infection model revealed that the activation status of cells is a further criterium directing effector translocation into a distinct cell population. In this review the current understanding of the complex and species-specific interaction between bacteria and host cells leading to type III secretion is discussed.


Subject(s)
Bacterial Adhesion , Host Microbial Interactions , Protein Transport , Type III Secretion Systems/metabolism , Adhesins, Bacterial/metabolism , Animals , Bacterial Outer Membrane Proteins/metabolism , Humans , Shigella/immunology , Shigella/pathogenicity , Virulence/immunology , Virulence Factors/metabolism , Yersinia/immunology , Yersinia/pathogenicity
11.
PLoS Biol ; 17(6): e3000334, 2019 06.
Article in English | MEDLINE | ID: mdl-31206517

ABSTRACT

Escherichia coli represents a classical intestinal gram-negative commensal. Despite this commensalism, different E. coli strains can mediate disparate immunogenic properties in a given host. Symbiotic E. coli strains such as E. coli Nissle 1917 (EcN) are attributed beneficial properties, e.g., promotion of intestinal homeostasis. Therefore, we aimed to identify molecular features derived from symbiotic bacteria that might help to develop innovative therapeutic alternatives for the treatment of intestinal immune disorders. This study was performed using the dextran sodium sulphate (DSS)-induced colitis mouse model, which is routinely used to evaluate potential therapeutics for the treatment of Inflammatory Bowel Diseases (IBDs). We focused on the analysis of flagellin structures of different E. coli strains. EcN flagellin was found to harbor a substantially longer hypervariable region (HVR) compared to other commensal E. coli strains, and this longer HVR mediated symbiotic properties through stronger activation of Toll-like receptor (TLR)5, thereby resulting in interleukin (IL)-22-mediated protection of mice against DSS-induced colitis. Furthermore, using bone-marrow-chimeric mice (BMCM), CD11c+ cells of the colonic lamina propria (LP) were identified as the main mediators of these flagellin-induced symbiotic effects. We propose flagellin from symbiotic E. coli strains as a potential therapeutic to restore intestinal immune homeostasis, e.g., for the treatment of IBD patients.


Subject(s)
Escherichia coli/metabolism , Flagellin/genetics , Symbiosis/genetics , Animals , Colitis/chemically induced , Colitis/immunology , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Female , Flagellin/metabolism , Intestinal Mucosa , Intestines , Male , Mice , Mice, Inbred C57BL , Signal Transduction/immunology , Symbiosis/physiology , Toll-Like Receptor 5/metabolism
12.
Sci Rep ; 9(1): 6406, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30992476

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

13.
Front Microbiol ; 10: 100, 2019.
Article in English | MEDLINE | ID: mdl-30846971

ABSTRACT

Pseudomonas aeruginosa is one of the main causative agents of nosocomial infections and the spread of multidrug-resistant strains is rising. Therefore, novel strategies for therapy are urgently required. The outer membrane composition of Gram-negative pathogens and especially of Pa restricts the efficacy of antibiotic entry into the cell and determines virulence. For efficient outer membrane protein biogenesis, the ß-barrel assembly machinery (BAM) complex in the outer membrane and periplasmic chaperones like Skp and SurA are crucial. Previous studies indicated that the importance of individual proteins involved in outer membrane protein biogenesis may vary between different Gram-negative species. In addition, since multidrug-resistant Pa strains pose a serious global threat, the interference with both virulence and antibiotic resistance by disturbing outer membrane protein biogenesis might be a new strategy to cope with this challenge. Therefore, deletion mutants of the non-essential BAM complex components bamB and bamC, of the skp homolog hlpA as well as a conditional mutant of surA were investigated. The most profound effects for both traits were associated with reduced levels of SurA, characterized by increased membrane permeability, enhanced sensitivity to antibiotic treatment and attenuation of virulence in a Galleria mellonella infection model. Strikingly, the depletion of SurA in a multidrug-resistant clinical bloodstream isolate re-sensitized the strain to antibiotic treatment. From our data we conclude that SurA of Pa serves as a promising target for developing a drug that shows antiinfective activity and re-sensitizes multidrug-resistant strains to antibiotics.

14.
Sci Rep ; 8(1): 13767, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30213965

ABSTRACT

High throughput sequencing has been proposed as a one-stop solution for diagnostics and molecular typing directly from patient samples, allowing timely and appropriate implementation of measures for treatment, infection prevention and control. However, it is unclear how the variety of available methods impacts the end results. We applied shotgun metagenomics on diverse types of patient samples using three different methods to deplete human DNA prior to DNA extraction. Libraries were prepared and sequenced with Illumina chemistry. Data was analyzed using methods likely to be available in clinical microbiology laboratories using genomics. The results of microbial identification were compared to standard culture-based microbiological methods. On average, 75% of the reads corresponded to human DNA, being a major determinant in the analysis outcome. None of the kits was clearly superior suggesting that the initial ratio between host and microbial DNA or other sample characteristics were the major determinants of the proportion of microbial reads. Most pathogens identified by culture were also identified through metagenomics, but substantial differences were noted between the taxonomic classification tools. In two cases the high number of human reads resulted in insufficient sequencing depth of bacterial DNA for identification. In three samples, we could infer the probable multilocus sequence type of the most abundant species. The tools and databases used for taxonomic classification and antimicrobial resistance identification had a key impact on the results, recommending that efforts need to be aimed at standardization of the analysis methods if metagenomics is to be used routinely in clinical microbiology.


Subject(s)
Bacteria/classification , Bacteria/genetics , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Molecular Typing/methods , Body Fluids/microbiology , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
15.
J Clin Microbiol ; 56(11)2018 11.
Article in English | MEDLINE | ID: mdl-30135233

ABSTRACT

Klebsiella pneumoniae and related species are frequent causes of nosocomial infections and outbreaks. Therefore, quick and reliable strain typing is crucial for the detection of transmission routes in the hospital. The aim of this study was to evaluate Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as rapid methods for typing clinical Klebsiella isolates in comparison to whole-genome sequencing (WGS), which was considered the gold standard for typing and identification. Here, 68 clinical Klebsiella strains were analyzed by WGS, FTIR, and MALDI-TOF MS. FTIR showed high discriminatory power in comparison to the WGS reference, whereas MALDI-TOF MS exhibited a low ability to type the isolates. MALDI-TOF mass spectra were further analyzed for peaks that showed high specificity for different Klebsiella species. Phylogenetic analysis revealed that the Klebsiella isolates comprised three different species: K. pneumoniae, K. variicola, and K. quasipneumoniae Genome analysis showed that MALDI-TOF MS can be used to distinguish K. pneumoniae from K. variicola due to shifts of certain mass peaks. The peaks were tentatively identified as three ribosomal proteins (S15p, L28p, L31p) and one stress response protein (YjbJ), which exhibit amino acid differences between the two species. Overall, FTIR has high discriminatory power to recognize the clonal relationship of isolates, thus representing a valuable tool for rapid outbreak analysis and for the detection of transmission events due to fast turnaround times and low costs per sample. Furthermore, specific amino acid substitutions allow the discrimination of K. pneumoniae and K. variicola by MALDI-TOF MS.


Subject(s)
Bacterial Typing Techniques/methods , Klebsiella Infections/microbiology , Klebsiella/classification , Klebsiella/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectroscopy, Fourier Transform Infrared , Bacterial Typing Techniques/standards , Cluster Analysis , Costs and Cost Analysis , Genome, Bacterial/genetics , Humans , Klebsiella/chemistry , Klebsiella/genetics , Klebsiella Infections/diagnosis , Polymorphism, Single Nucleotide/genetics , Sensitivity and Specificity , Sequence Analysis, DNA , Time Factors
17.
J Innate Immun ; 9(1): 33-51, 2017.
Article in English | MEDLINE | ID: mdl-27798934

ABSTRACT

Complement resistance is an important virulence trait of Yersinia enterocolitica (Ye). The predominant virulence factor expressed by Ye is Yersinia adhesin A (YadA), which enables bacterial attachment to host cells and extracellular matrix and additionally allows the acquisition of soluble serum factors. The serum glycoprotein vitronectin (Vn) acts as an inhibitory regulator of the terminal complement complex by inhibiting the lytic pore formation. Here, we show YadA-mediated direct interaction of Ye with Vn and investigated the role of this Vn binding during mouse infection in vivo. Using different Yersinia strains, we identified a short stretch in the YadA head domain of Ye O:9 E40, similar to the 'uptake region' of Y. pseudotuberculosis YPIII YadA, as crucial for efficient Vn binding. Using recombinant fragments of Vn, we found the C-terminal part of Vn, including heparin-binding domain 3, to be responsible for binding to YadA. Moreover, we found that Vn bound to the bacterial surface is still functionally active and thus inhibits C5b-9 formation. In a mouse infection model, we demonstrate that Vn reduces complement-mediated killing of Ye O:9 E40 and, thus, improved bacterial survival. Taken together, these findings show that YadA-mediated Vn binding influences Ye pathogenesis.


Subject(s)
Adhesins, Bacterial/metabolism , Vitronectin/metabolism , Yersinia Infections/immunology , Yersinia enterocolitica/physiology , Animals , Bacteriolysis , Complement System Proteins/metabolism , Host-Pathogen Interactions , Humans , Immunity, Innate , Immunomodulation , Mice , Mice, Inbred C57BL , Protein Binding , Protein Domains/genetics , Species Specificity , Virulence , Vitronectin/genetics , Yersinia enterocolitica/pathogenicity
19.
Article in English | MEDLINE | ID: mdl-27956426

ABSTRACT

The metallo-beta-lactamase GIM-1 has been found in various bacterial host species nearly exclusively in western Germany. However, not much is known about the epidemiology of GIM-1-positive Serratia marcescens Here we report on a surprisingly protracted regional dissemination. In-hospital transmission was investigated by using conventional epidemiological tools to identify spatiotemporal links. Strain typing was performed using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). Bayesian phylogeny was used to infer the time axis of the observed occurrence. Thirteen S. marcescens strains from 10 patients from 6 different German hospitals were investigated. Suspected in-hospital transmissions were confirmed by molecular typing at a higher resolution by WGS than by PFGE. A detailed sequence analysis demonstrated the spread of one predominant strain variant but also provided evidence for transfer of the blaGIM-1 gene cassette between different strains. A Bayesian phylogenetic analysis showed that the most recent common ancestor of the identified clonal cluster could be dated back to April 1993 (95% highest posterior density interval, January 1973 to March 2003) and that this strain might have already harbored the blaGIM-1 at that time and, therewith, years before the first detection of this resistance gene in clinical specimens. This study shows a long-standing clonal and plasmid-mediated expansion of GIM-1-producing S. marcescens that might have gone unnoticed in the absence of a standardized and effective molecular screening for carbapenemases. The systematic and early detection of resistance is thus highly advisable, especially for the prevention of potentially long-term dissemination that may progress beyond control.


Subject(s)
Cross Infection/transmission , Genome, Bacterial , Phylogeny , Serratia Infections/transmission , Serratia marcescens/genetics , beta-Lactam Resistance/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Typing Techniques , Bayes Theorem , Clone Cells , Cross Infection/drug therapy , Cross Infection/epidemiology , Cross Infection/microbiology , Electrophoresis, Gel, Pulsed-Field , Gene Expression , Genotype , Germany , High-Throughput Nucleotide Sequencing , Humans , Microbial Sensitivity Tests , Molecular Epidemiology , Plasmids/chemistry , Plasmids/metabolism , Serratia Infections/drug therapy , Serratia Infections/epidemiology , Serratia Infections/microbiology , Serratia marcescens/classification , Serratia marcescens/drug effects , Serratia marcescens/growth & development , beta-Lactamases/metabolism
20.
Sci Rep ; 6: 39053, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27982054

ABSTRACT

ß-Barrel proteins are found in the outer membrane (OM) of Gram-negative bacteria, chloroplasts and mitochondria. The assembly of these proteins into the corresponding OM is facilitated by a dedicated protein complex that contains a central conserved ß-barrel protein termed BamA in bacteria and Tob55/Sam50 in mitochondria. BamA and Tob55 consist of a membrane-integral C-terminal domain that forms a ß-barrel pore and a soluble N-terminal portion comprised of one (in Tob55) or five (in BamA) polypeptide transport-associated (POTRA) domains. Currently the functional significance of this difference and whether the homology between BamA and Tob55 can allow them to replace each other are unclear. To address these issues we constructed hybrid Tob55/BamA proteins with differently configured N-terminal POTRA domains. We observed that constructs harboring a heterologous C-terminal domain could not functionally replace the bacterial BamA or the mitochondrial Tob55 demonstrating species-specific requirements. Interestingly, the various hybrid proteins in combination with the bacterial chaperones Skp or SurA supported to a variable extent the assembly of bacterial ß-barrel proteins into the mitochondrial OM. Collectively, our findings suggest that the membrane assembly of various ß-barrel proteins depends to a different extent on POTRA domains and periplasmic chaperones.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Evolution, Molecular , Mitochondria/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...