Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 116: 1212-1222, 2019 02.
Article in English | MEDLINE | ID: mdl-30716908

ABSTRACT

Encapsulant systems are gaining wide practical interest due to their functional and nutritional properties. This paper was focusing on understanding structural relaxations in that systems near glass transition temperature. Freeze-dried trehalose-whey protein isolate-sunflower oil systems with various ratios of the last were used as a carbohydrate-protein-lipid food model. The Guggenheim-Anderson-de Boer (GAB) water sorption relationship was used as a tool to model water sorption isotherms. The glass transition temperature was obtained by differential scanning calorimetry (DSC). Structural α-relaxation temperatures were measured by dynamical mechanical analyses (DMA), dielectric analysis (DEA) and combined to cover a broad range for strength assessment. The microstructure was characterized by optical light microscopy, confocal laser scanning microscopy and scanning electron microscopy. The C1 and C2 constants for Williams-Landel-Ferry (WLF) equation and structural strength parameter were calculated for each system. The effect of sunflower oil and water contents on strength of carbohydrate-protein system was analyzed. Strength shows decreasing with increasing of lipid concentration in the mixtures and more complex dependence on the water content in a system.


Subject(s)
Carbohydrates/chemistry , Lipids/chemistry , Proteins/chemistry , Vitrification , Water/chemistry , Calorimetry, Differential Scanning , Chemical Phenomena , Drug Delivery Systems , Emulsions , Freeze Drying , Sunflower Oil/chemistry , Transition Temperature , Trehalose/chemistry
2.
J Dairy Sci ; 98(12): 8531-44, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26409971

ABSTRACT

Exopolysaccharide-producing Lactobacillus mucosae DPC 6426 was previously shown to have promising hypocholesterolemic activity in the atherosclerosis-prone apolipoprotein-E-deficient (apoE(-/-)) murine model. The aim of this study was to investigate the suitability of reduced-fat Cheddar and Swiss-type cheeses as functional (carrier) foods for delivery of this probiotic strain. All cheeses were manufactured at pilot-scale (500-L vats) in triplicate, with standard commercially available starters: for Cheddar, Lactococcus lactis; and for Swiss-type cheese, Streptococcus thermophilus, Lactobacillus helveticus, and Propionibacterium freudenreichii. Lactobacillus mucosae DPC 6426 was used as an adjunct culture during cheese manufacture, at a level of ~10(6) cfu·mL(-1) cheese milk (subsequently present in the cheese curd at>10(7) cfu·g(-1)). The adjunct strain remained viable at >5×10(7) cfu·g(-1) in both Swiss-type and Cheddar cheeses following ripening for 6 mo. Sensory analysis revealed that the presence of the adjunct culture imparted a more appealing appearance in Swiss-type cheese, but had no significant effect on the sensory characteristics of Cheddar cheeses. Moreover, the adjunct culture had no significant effect on cheese composition, proteolysis, pH, or instrumentally quantified textural characteristics of Cheddar cheeses. These data indicate that low-fat Swiss-type and Cheddar cheeses represent suitable food matrices for the delivery of the hypocholesterolemic Lactobacillus mucosae DPC 6426 in an industrial setting.


Subject(s)
Cheese/microbiology , Lactobacillus/metabolism , Polysaccharides, Bacterial/biosynthesis , Probiotics/administration & dosage , Animals , Mice , Milk/chemistry
3.
J Appl Microbiol ; 117(2): 509-17, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24833280

ABSTRACT

AIMS: To characterize Lactobacillus strains with EPS-producing ability compared with non-EPS-producing lactobacilli of the same species for technological performance including simulated gastrointestinal tract (GIT) conditions. METHODS AND RESULTS: Characterization of EPS-producing Lactobacillus mucosae DPC 6426 in detail based on 16S rRNA sequencing, and EPS production using scanning electron and atomic force microscopy. The EPS was found to consist of mannosyl residues, with mannose, glucose and galactose found to be the major sugar residues present in an approximate ratio of 3: 2: 2. The strain was compared to non-EPS-producing Lact. mucosae DPC 6420 following exposure to salt, bile, acid and heat stresses. Lact. mucosae DPC 6426 exhibited twofold increased (P < 0·05) survival during 120-min exposure to 5 mol NaCl, threefold increased survival during 90-min exposure to 0·7% (w/v) bile (P < 0·05), threefold increased survival when exposed to simulated gastric juice (P < 0·001) for 10 min and fivefold increased survival during 60-min exposure to HCl (P < 0·01) compared with Lact. mucosae DPC 6420. Furthermore, Lact. mucosae DPC 6426 was found to be more heat tolerant (P < 0·001) compared with Lact. mucosae DPC 6420 during 30-min exposure to 55°C. CONCLUSIONS: These data indicate that the EPS-producing Lact. mucosae DPC 6426 exhibits technological and biological robustness compared with a non-EPS-producing Lact. mucosae strain. SIGNIFICANCE AND IMPACT OF THE STUDY: The data implicate the potential suitability of EPS-producing Lact. mucosae DPC 6426 in food applications and/or as a probiotic culture.


Subject(s)
Lactobacillus/metabolism , Mannose/analysis , Polysaccharides, Bacterial/biosynthesis , Animals , Cattle , Lactobacillus/isolation & purification , Lactobacillus/ultrastructure , Polysaccharides, Bacterial/chemistry , Stress, Physiological
4.
J Dairy Sci ; 93(8): 3469-86, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20655415

ABSTRACT

Fat-reduced cheeses often suffer from undesirable texture, flavor, and cooking properties. Exopolysaccharides (EPS) produced by starter strains have been proposed as a mechanism to increase yield and to improve the texture and cooking properties of reduced-fat cheeses. The objective of this work was to assess the influence of an exopolysaccharide on the yield, texture, cooking properties, and quality of half-fat Cheddar cheese. Two pilot-scale half-fat Cheddar cheeses were manufactured using single starters of an isogenic strain of Lactococcus lactis ssp. cremoris (DPC6532 and DPC6533) that differed in their ability to produce exopolysaccharide. Consequently, any differences detected between the cheeses were attributed to the presence of the exopolysaccharide. The results indicated that cheeses made with the exopolysaccharide-producing starter had an 8.17% increase in actual cheese yield (per 100 kg of milk), a 9.49% increase in moisture content, increase in water activity and water desorption rate at relative humidities

Subject(s)
Cheese/analysis , Fats/analysis , Lactococcus lactis/metabolism , Polysaccharides, Bacterial/biosynthesis , Animals , Cheese/microbiology , Chemical Phenomena , Food Microbiology , Food Technology , Pilot Projects
5.
Scanning ; 32(3): 150-4, 2010.
Article in English | MEDLINE | ID: mdl-20593427

ABSTRACT

A new cryo-scanning transmission electron microscopy (cryo-STEM) technique for imaging casein micelles in a field emission scanning electron microscope is presented. Thin films of micellar casein suspensions on lacey carbon grids were prepared using a modified sample holder developed by Gatan UK. Bright and dark field images were obtained at -135°C showing casein micelles in their frozen hydrated state and in the size range 30-500 nm. Results were compared favorably with published images of casein micelles obtained with conventional cryo-transmission electron microscopy, suggesting that cryo-STEM is a useful alternative technique for visualizing food colloids close to their native state.


Subject(s)
Colloids , Cryoelectron Microscopy/methods , Food , Microscopy, Electron, Scanning/methods , Caseins/ultrastructure , Macromolecular Substances/ultrastructure
6.
J Food Sci ; 72(9): C483-90, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18034708

ABSTRACT

Cheddar cheese ripened at 8 degrees C was sampled at 7, 14, 28, 56, 112, and 168 d and subsequently used for the manufacture of processed cheese. The cheddar cheese samples were analyzed throughout ripening for proteolysis while the textural and rheological properties of the processed cheeses (PCs) were studied. The rate of proteolysis was the greatest in the first 28 d of cheddar cheese ripening but began to slow down as ripening progressed from 28 to 168 d. A similar trend was observed in changes to the texture of the PC samples, with the greatest decrease in hardness and increase in flowability being in the first 28 d of ripening. Confocal scanning laser microscopy showed that the degree of emulsification in the PC samples increased as the maturity of the cheddar cheese ingredient increased from 7 to 168 d. This increased emulsification resulted in a reduction in the rate of softening in the PC in samples manufactured from cheddar cheese bases at later ripening times. Multivariate data analysis was performed to summarize the relationships between proteolysis in the cheddar cheese bases and textural properties of the PC made therefrom. The proportion of alpha(s)(1)-casein (CN) in the cheddar cheese base was strongly correlated with hardness, adhesiveness, fracturability, springiness, and storage modulus values for the corresponding PC. Degradation of alpha(s) (1)-CN was the proteolytic event with the strongest correlation to the softening of PC samples, particularly those manufactured from cheddar cheese in the first 28 d of ripening.


Subject(s)
Cheese/analysis , Food Handling/methods , Adhesiveness , Electrophoresis, Polyacrylamide Gel , Hardness , Milk Proteins/analysis , Milk Proteins/metabolism , Rheology/methods , Time Factors , Viscosity
7.
J Dairy Sci ; 85(7): 1655-69, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12201515

ABSTRACT

The effects of Ca concentration and pH on the composition, microstructural, and functional properties of Mozzarella cheese were studied. Cheeses were made using a starter culture (control) or by direct acidification of the milk with lactic acid or lactic acid and glucono-delta-lactone. In each of three trials, four cheeses were produced: a control, CL, and three directly-acidified cheeses, DA1, DA2, and DA3. The cheeses were stored at 4 degrees C for 70 d. The Ca content and pH were varied by altering the pH at setting, pitching, and plasticization. The mean pH at 1 d and the Ca content (mg/g of protein) of the various cheeses were: CL, 5.42 and 27.7; DA1, 5.96 and 21.8; DA2, 5.93 and 29.6; DA3, 5.58 and 28.7. For cheeses with a high pH (i.e., approximately 5.9), reducing the Ca content from 29.6 to 21.8 mg/g of protein resulted in a significant decrease in the protein level and increases in the moisture content and mean level of nonexpressible serum (g/g of protein). Reducing the Ca concentration also resulted in a more swollen, hydrated para-casein matrix at 1 d. The decrease in Ca content in the high-pH cheeses coincided with increases in the mean stretchability and flowability of the melted cheese over the 70-d storage period. The fluidity of the melted cheese also increased when the Ca content was reduced, as reflected by a lower elastic shear modulus and a higher value for the phase angle, delta, of the melted cheese, especially after storage for <12 d. The melt time, flowability, and stretchability of the low-Ca, high-pH DA1 cheese at 1 d were similar to those for the CL cheese after storage for > or = 12 d. In contrast, the mean values for flowability and stretchability of the high-pH, high-Ca DA2 cheese over the 70-d period were significantly lower than those of the CL cheese. Reducing the pH of high-Ca cheese (27.7 to 29.6 mg/g of protein) from -5.95 to 5.58 resulted in higher flowability, stretchability, and fluidity of the melted cheese. For cheeses with similar pH and Ca concentration, the method of acidification had little effect on composition, microstructure, flowability, stretchability, and fluidity of the melted cheese.


Subject(s)
Calcium/chemistry , Caseins/chemistry , Cheese/analysis , Lactic Acid/chemistry , Animals , Calcium/analysis , Caseins/analysis , Caseins/metabolism , Caseins/ultrastructure , Cheese/standards , Chemical Phenomena , Chemistry, Physical , Fats/analysis , Food Handling/methods , Food Technology , Gluconates/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Lactones , Microscopy, Confocal , Rheology , Time Factors , Viscosity , Water/analysis , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...