Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 92020 06 04.
Article in English | MEDLINE | ID: mdl-32496194

ABSTRACT

The ability to modulate the efficacy of synaptic communication between neurons constitutes an essential property critical for normal brain function. Animal models have proved invaluable in revealing a wealth of diverse cellular mechanisms underlying varied plasticity modes. However, to what extent these processes are mirrored in humans is largely uncharted thus questioning their relevance in human circuit function. In this study, we focus on neurogliaform cells, that possess specialized physiological features enabling them to impart a widespread inhibitory influence on neural activity. We demonstrate that this prominent neuronal subtype, embedded in both mouse and human neural circuits, undergo remarkably similar activity-dependent modulation manifesting as epochs of enhanced intrinsic excitability. In principle, these evolutionary conserved plasticity routes likely tune the extent of neurogliaform cell mediated inhibition thus constituting canonical circuit mechanisms underlying human cognitive processing and behavior.


Subject(s)
Interneurons/physiology , Neuronal Plasticity , Adult , Aged , Animals , Biological Evolution , Brain/physiology , Female , Humans , Interneurons/chemistry , Male , Mice , Middle Aged , Neuroglia/chemistry , Neuroglia/physiology , Pyramidal Cells/chemistry , Pyramidal Cells/physiology , Young Adult
2.
Elife ; 92020 02 13.
Article in English | MEDLINE | ID: mdl-32053107

ABSTRACT

In violation of Dale's principle several neuronal subtypes utilize more than one classical neurotransmitter. Molecular identification of vesicular glutamate transporter three and cholecystokinin expressing cortical interneurons (CCK+VGluT3+INTs) has prompted speculation of GABA/glutamate corelease from these cells for almost two decades despite a lack of direct evidence. We unequivocally demonstrate CCK+VGluT3+INT-mediated GABA/glutamate cotransmission onto principal cells in adult mice using paired recording and optogenetic approaches. Although under normal conditions, GABAergic inhibition dominates CCK+VGluT3+INT signaling, glutamatergic signaling becomes predominant when glutamate decarboxylase (GAD) function is compromised. CCK+VGluT3+INTs exhibit surprising anatomical diversity comprising subsets of all known dendrite targeting CCK+ interneurons in addition to the expected basket cells, and their extensive circuit innervation profoundly dampens circuit excitability under normal conditions. However, in contexts where the glutamatergic phenotype of CCK+VGluT3+INTs is amplified, they promote paradoxical network hyperexcitability which may be relevant to disorders involving GAD dysfunction such as schizophrenia or vitamin B6 deficiency.


Subject(s)
Glutamic Acid/metabolism , Vesicular Glutamate Transport Proteins/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Interneurons/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...