Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1008917, 2022.
Article in English | MEDLINE | ID: mdl-36340360

ABSTRACT

Holy basil (Ocimum Tenuiflorum L.) is a widely used herb containing several bioactive compounds of interest for the food and pharmaceutical industries. Plant factories using artificial lighting (PFAL) is a modern agricultural system that offers opportunity to improve crop production and stabilizes productivity in many herbal plants. However, little is known about the variation among holy basil varieties that can be cultivated and provide reasonable biomass and bioactive compounds in PFAL. We therefore evaluated 10 Thai accessions and two commercial cultivars in a PFAL (with hydroponic cultivation) to categorize cultivar characteristics by investigating physiological responses and secondary metabolite variation at plant flowering stage. Among Thai varieties, net photosynthetic rate (Pn) was significantly highest in varieties OC059 and OC081. The greatest growth and biomass measures were observed in OC064. Antioxidant capacity also varied, with the greatest accumulation of total phenolic compounds (TPC), flavonoids, and antioxidant activity by DPPH assay in OC064, and highest terpenoid content in OC194. The accumulation of major compounds confirmed by showing the highest levels of eugenol in OC057, OC063, OC194, and OC195 and methyl eugenol in OC072 and OC081. The highest α-humulene content was found in OC059. PCA based on physiological responses and secondary metabolites indicate that OC064 was clearly distinguished from other cultivars/accessions. These findings demonstrate variation across holy basil accessions for physiologic responses, antioxidant capacity, and secondary compounds in PFAL. These insights lead to identification of suitable varieties which is the most important step of developing an efficient method for producing high quality raw materials of Thai holy basil for supplying the foods and pharmaceutical industries.

2.
Oxid Med Cell Longev ; 2021: 3963510, 2021.
Article in English | MEDLINE | ID: mdl-33505581

ABSTRACT

The impairment in the regulation of the physiological process in the inflammatory phase of wound healing results in oxidative stress damage, which increases the severity and extends the healing time. In this study, we aimed to evaluate the radical scavenging properties of Coccinia leaf extract and its ability to ameliorate a migration process in vitro. Coccinia is a medicinal plant that was used in ancient times for relieving insect bite itching and swelling. However, the role of Coccinia leaf extract as an antioxidant related to the process of wound healing has never been studied. In this study, we demonstrated that the leaf extract possessed antioxidant properties that acted as a proton donor to neutralize reactive oxygen species with the IC50 value of 4.85 mg/mL of the extract. It could chelate iron with the IC50 value of 21.39 mg/mL of the extract. The leaf extract protected the human fibroblasts and keratinocytes from hydrogen peroxide-induced oxidative stress by increasing cell survival rate by more than 20% in all test doses. The protective property was dose-dependently correlated with the decrease in reactive oxygen species formation. In addition, the leaf extract enhanced the cell migration rate of fibroblasts and keratinocytes up to 23% compared with vehicle control. The results suggested that Coccinia leaf extract may be a potential herb for increasing the wound healing process with its antioxidant capacity and can be used as an herbal ingredient for the utilization of skincare products.


Subject(s)
Antioxidants/pharmacology , Cucurbitaceae/chemistry , Fibroblasts/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Wound Healing , Cells, Cultured , Humans , In Vitro Techniques , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...