Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(6): A83-A109, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36821322

ABSTRACT

Analytical spectroscopy methods have shown many possible uses for nuclear material diagnostics and measurements in recent studies. In particular, the application potential for various atomic spectroscopy techniques is uniquely diverse and generates interest across a wide range of nuclear science areas. Over the last decade, techniques such as laser-induced breakdown spectroscopy, Raman spectroscopy, and x-ray fluorescence spectroscopy have yielded considerable improvements in the diagnostic analysis of nuclear materials, especially with machine learning implementations. These techniques have been applied for analytical solutions to problems concerning nuclear forensics, nuclear fuel manufacturing, nuclear fuel quality control, and general diagnostic analysis of nuclear materials. The data yielded from atomic spectroscopy methods provide innovative solutions to problems surrounding the characterization of nuclear materials, particularly for compounds with complex chemistry. Implementing these optical spectroscopy techniques can provide comprehensive new insights into the chemical analysis of nuclear materials. In particular, recent advances coupling machine learning methods to the processing of atomic emission spectra have yielded novel, robust solutions for nuclear material characterization. This review paper will provide a summation of several of these recent advances and will discuss key experimental studies that have advanced the use of analytical atomic spectroscopy techniques as active tools for nuclear diagnostic measurements.

2.
Anal Methods ; 13(30): 3368-3378, 2021 08 14.
Article in English | MEDLINE | ID: mdl-34250989

ABSTRACT

We present the first reported quantification of trace elements in plutonium via a portable laser-induced breakdown spectroscopy (LIBS) device and demonstrate the use of chemometric analysis to enhance the handheld device's sensitivity and precision. Quantification of trace elements such as iron and nickel in plutonium metal via LIBS is a challenging problem due to the complex nature of the plutonium optical emission spectra. While rapid analysis of plutonium alloys has been demonstrated using portable LIBS devices, such as the SciAps Z300, their detection limits for trace elements are severely constrained by their achievable pulse power and length, light collection optics, and detectors. In this paper, analytical methods are evaluated as a means to circumvent the detection constraints. Three chemometric methods often used in analytical spectroscopy are evaluated; principal component regression, partial least-squares regression, and artificial neural networks. These models are evaluated based on goodness-of-fit metrics, root mean-squared error, and their achievable limits of detection (LoDs). Partial least squares proved superior for determining content of iron and nickel in plutonium metal, yielding LoDs of 15 and 20 ppm, respectively. These results of identifying the undesirable trace elements in plutonium components are critical for applications such as fabricating radioisotope thermoelectric generators or nuclear fuel.


Subject(s)
Plutonium , Trace Elements , Alloys , Lasers , Machine Learning , Spectrum Analysis , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...