Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(21): eaax3333, 2020 05.
Article in English | MEDLINE | ID: mdl-32494729

ABSTRACT

Inflammation is an essential part of immunity against pathogens and tumors but can promote disease if not tightly regulated. Self and non-self-nucleic acids can trigger inflammation, through recognition by the cyclic GMP-AMP (cGAMP) synthetase (cGAS) and subsequent activation of the stimulator of interferon genes (STING) protein. Here, we show that RNA:DNA hybrids can be detected by cGAS and that the Lysyl-tRNA synthetase (LysRS) inhibits STING activation through two complementary mechanisms. First, LysRS interacts with RNA:DNA hybrids, delaying recognition by cGAS and impeding cGAMP production. Second, RNA:DNA hybrids stimulate LysRS-dependent production of diadenosine tetraphosphate (Ap4A) that in turn attenuates STING-dependent signaling. We propose a model whereby these mechanisms cooperate to buffer STING activation. Consequently, modulation of the LysRS-Ap4A axis in vitro or in vivo interferes with inflammatory responses. Thus, altogether, we establish LysRS and Ap4A as pharmacological targets to control STING signaling and treat inflammatory diseases.

2.
Ann Oncol ; 28(9): 2149-2159, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28911069

ABSTRACT

BACKGROUND: While tumor-tissue remains the 'gold standard' for genetic analysis in cancer patients, it is challenged with the advent of circulating cell-free tumor DNA (ctDNA) analysis from blood samples. Here, we broaden our previous study on the clinical validation of plasma DNA in metastatic colorectal cancer patients, by evaluating its clinical utility under standard management care. PATIENTS AND METHODS: Concordance and data turnaround-time of ctDNA when compared with tumor-tissue analysis were studied in a real-time blinded prospective multicenter clinical study (n = 140 metastatic colorectal patients). Results are presented according to STARD criteria and were discussed in regard with clinical outcomes of patients. RESULTS: Much more mutations were found by ctDNA analysis: 59%, 11.8% and 14.4% of the patients were found KRAS, NRAS and BRAF mutant by ctDNA analysis instead of 44%, 8.8% and 7.2% by tumor-tissue analysis. Median tumor-tissue data turnaround-time was 16 days while 2 days for ctDNA analysis. Discordant samples analysis revealed that use of biopsy, long delay between tumor-tissue and blood collection and resection of the tumor at time of blood draw, tumor site, or type of tissue analyzed seem to affect concordance. Altogether, the clinical data with respect to the anti-epidermal growth factor receptor response (RAS status) and the prognosis (BRAF status) of those discordant patients do not appear contradictory to the mutational status as determined by plasma analysis. Lastly, we present the first distribution profile of the RAS and BRAF hotspot mutations as determined by ctDNA analysis (n = 119), revealing a high proportion of patients with multiple mutations (45% of the population and up to 5 mutations) and only 24% of WT scored patients for both genes. Mutation profile as determined from ctDNA analysis with using various detection thresholds highlights the importance of the test sensitivity. CONCLUSION: Our study showed that ctDNA could replace tumor-tissue analysis, and also clinical utility of ctDNA analysis by considerably reducing data turnaround time.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/genetics , DNA, Neoplasm/blood , ErbB Receptors/antagonists & inhibitors , Neoplasm Metastasis/genetics , Point Mutation , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/blood , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Female , Genes, ras , Humans , Male , Middle Aged , Prospective Studies , Proto-Oncogene Proteins B-raf/genetics , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...