Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Med Chem ; 66(7): 4633-4658, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36939673

ABSTRACT

The rapid identification of early hits by fragment-based approaches and subsequent hit-to-lead optimization represents a challenge for drug discovery. To address this challenge, we created a strategy called "DOTS" that combines molecular dynamic simulations, computer-based library design (chemoDOTS) with encoded medicinal chemistry reactions, constrained docking, and automated compound evaluation. To validate its utility, we applied our DOTS strategy to the challenging target syntenin, a PDZ domain containing protein and oncology target. Herein, we describe the creation of a "best-in-class" sub-micromolar small molecule inhibitor for the second PDZ domain of syntenin validated in cancer cell assays. Key to the success of our DOTS approach was the integration of protein conformational sampling during hit identification stage and the synthetic feasibility ranking of the designed compounds throughout the optimization process. This approach can be broadly applied to other protein targets with known 3D structures to rapidly identify and optimize compounds as chemical probes and therapeutic candidates.


Subject(s)
PDZ Domains , Syntenins , Drug Discovery , Syndecans/metabolism
2.
J Cell Sci ; 135(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-35971817

ABSTRACT

Upregulation of the developmental Wnt planar cell polarity (Wnt/PCP) pathway is observed in many cancers and is associated with cancer development. We have recently shown that PRICKLE1, a core Wnt/PCP pathway component, is a marker of poor prognosis in triple-negative breast cancer (TNBC). PRICKLE1 is phosphorylated by the serine/threonine kinase MINK1 and contributes to TNBC cell motility and invasiveness. However, the identity of the substrates of MINK1 and the role of MINK1 enzymatic activity in this process remain to be addressed. We used a phosphoproteomic strategy to identify MINK1 substrates, including LL5ß (also known as PHLDB2). LL5ß anchors microtubules at the cell cortex through its association with CLASP proteins to trigger focal adhesion disassembly. LL5ß is phosphorylated by MINK1, promoting its interaction with CLASP proteins. Using a kinase inhibitor, we demonstrate that the enzymatic activity of MINK1 is involved in PRICKLE1-LL5ß complex assembly and localization, as well as in cell migration. Analysis of gene expression data reveals that the concomitant upregulation of levels of mRNA encoding PRICKLE1 and LL5ß, which are MINK1 substrates, is associated with poor metastasis-free survival in TNBC patients. Taken together, our results suggest that MINK1 may represent a potential target for treatment of TNBC.


Subject(s)
Protein Serine-Threonine Kinases , Triple Negative Breast Neoplasms , Cell Line, Tumor , Cell Movement , Humans , Microtubules/metabolism , Protein Serine-Threonine Kinases/genetics , Serine/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
3.
Iran J Vet Res ; 22(1): 9-14, 2021.
Article in English | MEDLINE | ID: mdl-34149851

ABSTRACT

BACKGROUND: Lameness in dairy cattle is prevalent worldwide and has serious economic and welfare implications. Nevertheless, it is an overlooked and least studied dairy problem in Pakistan. AIMS: This study was executed for in vivo and in vitro evaluation of antimicrobials and disinfectants against bacterial pathogens from hoof lesions of commercial dairy cattle. METHODS: For in vitro studies, 23 bacterial isolates (n=10 Staphylococcus aureus, n=8 Fusobacterium necrophorum, and n=5 Bacteroides) from hoof lesions were used for antimicrobial and disinfectants susceptibility testing. In vivo trials were carried out among 4 groups of dairy cows suffering from hoof lesions using different combinations of antimicrobials, non-steroidal anti-inflammatory drugs (NSAIDs), and disinfectants either parenterally or topically. RESULTS: Results indicated that most of the isolates of S. aureus, F. necrophorum, and Bacteroides were resistant to penicillin, amoxicillin, trimethoprim + sulphamethoxazole, oxytetracycline, and tylosin. Ciprofloxacin and gentamicin were the most effective antimicrobials (in vitro) against all three bacterial pathogens. Comparison of in vitro efficacy of disinfectants showed that copper sulfate was the most effective disinfectant against the three pathogens followed by povidone-iodine and chloroxylenol. In vivo trials revealed that ciprofloxacin at 5 mg/kg/day intramuscular (IM) for 7 days, flunixin meglumine at 2.2 mg/kg/day IM for 7 days, and copper sulfate (5% solution) as foot-bath twice daily for 21 days was the most effective treatment regimen to treat lameness in commercial dairy cows. CONCLUSION: It was concluded that in vitro antibiogram and disinfectant studies were useful tools to assess the effectiveness of routinely used antimicrobials and disinfectants for the treatment of lameness.

4.
Methods Mol Biol ; 2256: 17-40, 2021.
Article in English | MEDLINE | ID: mdl-34014514

ABSTRACT

Identification of protein networks becomes indispensable for determining the function of a given protein of interest. Some proteins harbor a PDZ binding motif (PDZBM) located at the carboxy-terminus end. This motif is necessary to recruit PDZ domain proteins which are involved in signaling, trafficking, and maintenance of cell architecture. In the present chapter, we present two complementary approaches (immunopurification and peptide-based purification procedures) followed by mass spectrometry analysis to identify PDZ domain proteins associated to a given protein of interest. As proof of example, we focus our attention on TANC1 which is a scaffold protein harboring a PDZBM at its carboxy-terminus. Using these two approaches, we identified several PDZ domain containing proteins. Some of them were found with both approaches, and some were specifically identified using peptide-based purification procedure. This exemplifies advantages and differences of both strategies to identify PDZ interactions.


Subject(s)
Chromatography, Affinity/methods , Mass Spectrometry/methods , Membrane Proteins/metabolism , PDZ Domains , HEK293 Cells , Humans , Protein Binding
5.
Proteomics ; 19(21-22): e1800487, 2019 11.
Article in English | MEDLINE | ID: mdl-31513346

ABSTRACT

SCRIB is a scaffold protein containing leucine-rich repeats (LRR) and PSD-95/Dlg-A/ZO-1 domains (PDZ) that localizes at the basolateral membranes of polarized epithelial cells. Deregulation of its expression or localization leads to epithelial defects and tumorigenesis in part as a consequence of its repressive role on several signaling pathways including AKT, ERK, and HIPPO. In the present work, a proteomic approach is used to characterize the protein complexes associated to SCRIB and its paralogue LANO. Common and specific sets of proteins associated to SCRIB and LANO by MS are identified and an extensive landscape of their associated networks and the first comparative analysis of their respective interactomes are provided. Under proteasome inhibition, it is further found that SCRIB is associated to the ß-catenin destruction complex that is central in Wnt/ß-catenin signaling, a conserved pathway regulating embryonic development and cancer progression. It is shown that the SCRIB/ß-catenin interaction is potentiated upon Wnt3a stimulation and that SCRIB plays a repressing role on Wnt signaling. The data thus provide evidence for the importance of SCRIB in the regulation of the Wnt/ß-catenin pathway.


Subject(s)
Carrier Proteins/genetics , Membrane Proteins/genetics , Neoplasms/genetics , Proteomics , Tumor Suppressor Proteins/genetics , Carcinogenesis/drug effects , Cell Line, Tumor , Cell Polarity/drug effects , Cell Proliferation/drug effects , Epithelial Cells/drug effects , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Proteasome Inhibitors/pharmacology , Signal Transduction/genetics , Wnt Signaling Pathway/genetics , Wnt3A Protein/genetics , beta Catenin/genetics
6.
Br J Cancer ; 120(9): 931-940, 2019 04.
Article in English | MEDLINE | ID: mdl-30971775

ABSTRACT

BACKGROUND: Triple-negative breast cancers (TNBC) are poor-prognosis tumours candidate to chemotherapy as only systemic treatment. We previously found that PRICKLE1, a prometastatic protein involved in planar cell polarity, is upregulated in TNBC. We investigated the protein complex associated with PRICKLE1 in TNBC to identify proteins possibly involved in metastatic dissemination, which might provide new prognostic and/or therapeutic targets. METHODS: We used a proteomic approach to identify protein complexes associated with PRICKLE1. The mRNA expression levels of the corresponding genes were assessed in 8982 patients with invasive primary breast cancer. We then characterised the molecular interaction between PRICKLE1 and the guanine nucleotide exchange factor ECT2. Finally, experiments in Xenopus were carried out to determine their evolutionarily conserved interaction. RESULTS: Among the PRICKLE1 proteins network, we identified several small G-protein regulators. Combined analysis of the expression of PRICKLE1 and small G-protein regulators had a strong prognostic value in TNBC. Notably, the combined expression of ECT2 and PRICKLE1 provided a worst prognosis than PRICKLE1 expression alone in TNBC. PRICKLE1 regulated ECT2 activity and this interaction was evolutionary conserved. CONCLUSIONS: This work supports the idea that an evolutionarily conserved signalling pathway required for embryogenesis and activated in cancer may represent a suitable therapeutic target.


Subject(s)
LIM Domain Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Evolution, Molecular , Female , Humans , LIM Domain Proteins/genetics , Middle Aged , Prognosis , Proteome/metabolism , Proto-Oncogene Proteins/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcriptome , Triple Negative Breast Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Xenopus laevis , rac1 GTP-Binding Protein/metabolism
7.
J Mol Biol ; 430(19): 3545-3564, 2018 09 28.
Article in English | MEDLINE | ID: mdl-29782831

ABSTRACT

Cell polarity is a vital biological process involved in the building, maintenance and normal functioning of tissues in invertebrates and vertebrates. Unsurprisingly, molecular defects affecting polarity organization and functions have a strong impact on tissue homeostasis, embryonic development and adult life, and may directly or indirectly lead to diseases. Genetic studies have demonstrated the causative effect of several polarity genes in diseases; however, much remains to be clarified before a comprehensive view of the molecular organization and regulation of the protein networks associated with polarity proteins is obtained. This challenge can be approached head-on using proteomics to identify protein complexes involved in cell polarity and their modifications in a spatio-temporal manner. We review the fundamental basics of mass spectrometry techniques and provide an in-depth analysis of how mass spectrometry has been instrumental in understanding the complex and dynamic nature of some cell polarity networks at the tissue (apico-basal and planar cell polarities) and cellular (cell migration, ciliogenesis) levels, with the fine dissection of the interconnections between prototypic cell polarity proteins and signal transduction cascades in normal and pathological situations. This review primarily focuses on epithelial structures which are the fundamental building blocks for most metazoan tissues, used as the archetypal model to study cellular polarity. This field offers broad perspectives thanks to the ever-increasing sensitivity of mass spectrometry and its use in combination with recently developed molecular strategies able to probe in situ proteomic networks.


Subject(s)
Cell Polarity/physiology , Mass Spectrometry , Neural Networks, Computer , Proteome , Proteomics , Animals , Humans , Mass Spectrometry/methods , Proteomics/methods
8.
Trends Cancer ; 3(2): 113-125, 2017 02.
Article in English | MEDLINE | ID: mdl-28718442

ABSTRACT

Cancer cells are addicted to a large spectrum of extracellular cues implicated in initiation, stem cell renewal, tumor growth, dissemination in the body, and resistance to treatment. Wingless/Int-1 (Wnt) ligands and their associated signaling cascades contribute to most of these processes, paving the way for opportunities in therapeutic development. The developmental Wnt/planar cell polarity (PCP) pathway is the most recently described branch of Wnt signaling strongly implicated in cancer development at early and late stages. We describe here some of the latest knowledge accumulated on this pathway and the pending questions, present the most convincing findings about its role in cancer, and review the most promising strategies currently designed to target its components.


Subject(s)
Molecular Targeted Therapy , Neoplasms/genetics , Wnt Proteins/genetics , Wnt Signaling Pathway/genetics , Cell Polarity/genetics , Cell Self Renewal/genetics , Humans , Neoplasms/pathology , Neoplasms/therapy
10.
Dev Cell ; 37(4): 311-325, 2016 May 23.
Article in English | MEDLINE | ID: mdl-27184734

ABSTRACT

Components of the evolutionarily conserved developmental planar cell polarity (PCP) pathway were recently described to play a prominent role in cancer cell dissemination. However, the molecular mechanisms by which PCP molecules drive the spread of cancer cells remain largely unknown. PRICKLE1 encodes a PCP protein bound to the promigratory serine/threonine kinase MINK1. We identify RICTOR, a member of the mTORC2 complex, as a PRICKLE1-binding partner and show that the integrity of the PRICKLE1-MINK1-RICTOR complex is required for activation of AKT, regulation of focal adhesions, and cancer cell migration. Disruption of the PRICKLE1-RICTOR interaction results in a strong impairment of breast cancer cell dissemination in xenograft assays. Finally, we show that upregulation of PRICKLE1 in basal breast cancers, a subtype characterized by high metastatic potential, is associated with poor metastasis-free survival.


Subject(s)
Breast Neoplasms/pathology , LIM Domain Proteins/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Focal Adhesions/metabolism , Genes, Dominant , Humans , LIM Domain Proteins/chemistry , Mechanistic Target of Rapamycin Complex 2 , Neoplasm Metastasis , Phosphorylation , Prognosis , Protein Binding , Protein Domains , Protein Interaction Mapping , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rapamycin-Insensitive Companion of mTOR Protein , Tumor Suppressor Proteins/chemistry , Up-Regulation
11.
Dev Cell ; 36(1): 50-62, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26766442

ABSTRACT

Control of cell-division orientation is integral to epithelial morphogenesis and asymmetric cell division. Proper spatiotemporal localization of the evolutionarily conserved Gαi-LGN-NuMA protein complex is critical for mitotic spindle orientation, but how this is achieved remains unclear. Here we identify Suppressor APC domain containing 2 (SAPCD2) as a previously unreported LGN-interacting protein. We show that SAPCD2 is essential to instruct planar mitotic spindle orientation in both epithelial cell cultures and mouse retinal progenitor cells in vivo. Loss of SAPCD2 randomizes spindle orientation, which in turn disrupts cyst morphogenesis in three-dimensional cultures, and triples the number of terminal asymmetric cell divisions in the developing retina. Mechanistically, we show that SAPCD2 negatively regulates the localization of LGN at the cell cortex, likely by competing with NuMA for its binding. These results uncover SAPCD2 as a key regulator of the ternary complex controlling spindle orientation during morphogenesis and asymmetric cell divisions.


Subject(s)
Antigens, Nuclear/metabolism , Cell Polarity/physiology , Mitosis/physiology , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Spindle Apparatus/metabolism , Animals , Cell Cycle/genetics , Cell Cycle Proteins , Cell Polarity/genetics , Humans , Mice , Morphogenesis/physiology , Nuclear Proteins/genetics , Protein Binding
12.
J Biol Chem ; 290(51): 30562-72, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26499793

ABSTRACT

The non-canonical WNT/planar cell polarity (WNT/PCP) pathway plays important roles in morphogenetic processes in vertebrates. Among WNT/PCP components, protein tyrosine kinase 7 (PTK7) is a tyrosine kinase receptor with poorly defined functions lacking catalytic activity. Here we show that PTK7 associates with receptor tyrosine kinase-like orphan receptor 2 (ROR2) to form a heterodimeric complex in mammalian cells. We demonstrate that PTK7 and ROR2 physically and functionally interact with the non-canonical WNT5A ligand, leading to JNK activation and cell movements. In the Xenopus embryo, Ptk7 functionally interacts with Ror2 to regulate protocadherin papc expression and morphogenesis. Furthermore, we show that Ptk7 is required for papc activation induced by Wnt5a. Interestingly, we find that Wnt5a stimulates the release of the tagged Ptk7 intracellular domain, which can translocate into the nucleus and activate papc expression. This study reveals novel molecular mechanisms of action of PTK7 in non-canonical WNT/PCP signaling that may promote cell and tissue movements.


Subject(s)
Cell Nucleus/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Wnt Signaling Pathway/physiology , Xenopus Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Cadherins/biosynthesis , Cadherins/genetics , Cell Nucleus/genetics , Embryo, Nonmammalian/metabolism , HEK293 Cells , Humans , Morphogenesis/physiology , Protocadherins , Receptor Protein-Tyrosine Kinases/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt-5a Protein , Xenopus Proteins/biosynthesis , Xenopus Proteins/genetics , Xenopus laevis
13.
J Biol Chem ; 290(18): 11537-46, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25770211

ABSTRACT

Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the "synergistic" melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows "biased signaling." These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders.


Subject(s)
Melatonin/metabolism , Protein Multimerization , Receptor, Melatonin, MT2/chemistry , Receptor, Serotonin, 5-HT2C/chemistry , Serotonin/metabolism , Signal Transduction , Acetamides/pharmacology , Arrestins/metabolism , Drug Synergism , Gene Expression Regulation/drug effects , HEK293 Cells , HeLa Cells , Humans , Melatonin/pharmacology , Protein Multimerization/drug effects , Protein Structure, Quaternary , Protein Transport/drug effects , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/genetics , Receptor, Melatonin, MT2/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin/pharmacology , Signal Transduction/drug effects , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Type C Phospholipases/metabolism , beta-Arrestins
14.
Cell Commun Signal ; 13: 2, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25627785

ABSTRACT

BACKGROUND: The WNT/planar-cell-polarity (PCP) pathway is a key regulator of cell polarity and directional cell movements. Core PCP proteins such as Van Gogh-like2 (VANGL2) are evolutionarily highly conserved; however, the mammalian PCP machinery is still poorly understood mainly due to lack of suitable models and quantitative methodology. WNT/PCP has been implicated in many human diseases with the most distinguished positive role in the metastatic process, which accounts for more than 90% of cancer related deaths, and presents therefore an attractive target for pharmacological interventions. However, cellular assays for the assessment of PCP signaling, which would allow a more detailed mechanistic analysis of PCP function and possibly also high throughput screening for chemical compounds targeting mammalian PCP signaling, are still missing. RESULTS: Here we describe a mammalian cell culture model, which correlates B lymphocyte migration of patient-derived MEC1 cells and asymmetric localization of fluorescently-tagged VANGL2. We show by live cell imaging that PCP proteins are polarized in MEC1 cells and that VANGL2 polarization is controlled by the same mechanism as in tissues i.e. it is dependent on casein kinase 1 activity. In addition, destruction of the actin cytoskeleton leads to migratory arrest and cell rounding while VANGL2-EGFP remains polarized suggesting that active PCP signaling visualized by polarized distribution of VANGL2 is a cause for and not a consequence of the asymmetric shape of a migrating cell. CONCLUSIONS: The presented imaging-based methodology allows overcoming limitations of earlier approaches to study the mammalian WNT/PCP pathway, which required in vivo models and analysis of complex tissues. Our system investigating PCP-like signaling on a single-cell level thus opens new possibilities for screening of compounds, which control asymmetric distribution of proteins in the PCP pathway.


Subject(s)
B-Lymphocytes/metabolism , Cell Movement/immunology , Cell Polarity/immunology , Intracellular Signaling Peptides and Proteins/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Membrane Proteins/immunology , Wnt Signaling Pathway/immunology , B-Lymphocytes/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Polarity/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Membrane Proteins/genetics , Wnt Signaling Pathway/genetics
15.
Mol Cell Proteomics ; 12(9): 2587-603, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23722234

ABSTRACT

Protein-protein interactions organize the localization, clustering, signal transduction, and degradation of cellular proteins and are therefore implicated in numerous biological functions. These interactions are mediated by specialized domains able to bind to modified or unmodified peptides present in binding partners. Among the most broadly distributed protein interaction domains, PSD95-disc large-zonula occludens (PDZ) domains are usually able to bind carboxy-terminal sequences of their partners. In an effort to accelerate the discovery of PDZ domain interactions, we have constructed an array displaying 96% of the human PDZ domains that is amenable to rapid two-hybrid screens in yeast. We have demonstrated that this array can efficiently identify interactions using carboxy-terminal sequences of PDZ domain binders such as the E6 oncoviral protein and protein kinases (PDGFRß, BRSK2, PCTK1, ACVR2B, and HER4); this has been validated via mass spectrometry analysis. Taking advantage of this array, we show that PDZ domains of Scrib and SNX27 bind to the carboxy-terminal region of the planar cell polarity receptor Vangl2. We also have demonstrated the requirement of Scrib for the promigratory function of Vangl2 and described the morphogenetic function of SNX27 in the early Xenopus embryo. The resource presented here is thus adapted for the screen of PDZ interactors and, furthermore, should facilitate the understanding of PDZ-mediated functions.


Subject(s)
PDZ Domains , Proteome/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Cell Movement , Embryo, Nonmammalian/metabolism , Enzyme-Linked Immunosorbent Assay , Fluorescence , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Molecular Sequence Data , Morphogenesis , Oncogene Proteins, Viral/metabolism , Protein Interaction Mapping , Protein Kinases/chemistry , Protein Kinases/metabolism , Reproducibility of Results , Sorting Nexins/metabolism , Tumor Suppressor Proteins/metabolism , Two-Hybrid System Techniques , Xenopus/embryology , Xenopus/metabolism
16.
Vet Parasitol ; 196(1-2): 203-5, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23394797

ABSTRACT

The prevalence of Balantidium coli among donkeys in Lahore and adjoining areas was surveyed and a trial conducted to determine the efficacy of two antiprotozoal drugs: secnidazole (Dysen Forte) and Kalonji (Nigella sativa). Four-hundred donkeys were examined, and 73 (18.3%) were found positive for Balantidium coli. A slight decrease in PCV and an increase in Hb values of infected donkeys were found after antiprotozoal treatment. Secnidazole was 89.5% effective for the treatment of equine balantidiasis compared to 40.0% for Nigella sativa. This is the first report of balantidiasis in equines from Pakistan. It is not known if balantidiasis is an emerging problem in equines or whether it is a newly reported infection.


Subject(s)
Balantidiasis/veterinary , Equidae , Metronidazole/analogs & derivatives , Nigella sativa/chemistry , Plant Extracts/therapeutic use , Animals , Antiprotozoal Agents/therapeutic use , Balantidiasis/blood , Balantidiasis/drug therapy , Balantidiasis/epidemiology , Female , Male , Metronidazole/therapeutic use , Pakistan/epidemiology , Plant Extracts/chemistry , Prevalence
17.
J Parasitol ; 99(4): 715-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23347204

ABSTRACT

The present study evaluated the therapeutic efficacy of azithromycin, co-trimoxazole and kalvangi (Nigella sativa, also known as Black Cumin) against Cryptosporidium parvum infection in calves under field conditions. The experimental calves were treated with azithromycin (group A) at 1500 mg/calf/day, co-trimoxazole (group B) at 30 mg Kg-1 and kalvangi seeds powder (group C) at 750 mg Kg-1 BW orally for 7 days. Calves in the group D were naturally infected with C. parvum , untreated animals (positive control) while the calves in the group E were uninfected negative control animals. A significant decrease (p < 0.05) in oocyst counts for calves in groups A, B and C was observed compared to group D. When the oocyst counts amongst the treatment groups A, B and C were compared, a significant decrease (p < 0.05) was observed in group A. On day 21 post-treatment, the efficacy of azithromycin, co-trimoxazole and kalvangi in calves was 88.2% (95% C.I. ± 15.4), 45% (95% C.I. ± 21.8) and 27.8% (95% C.I. ± 20.7), respectively. This study confirmed previous reports of azithromycin efficacy against C. parvum infection, but found co-trimoxazole and kalvangi to be ineffective for this infection under these treatment regimens.


Subject(s)
Anti-Infective Agents/therapeutic use , Cattle Diseases/drug therapy , Cryptosporidiosis/veterinary , Cryptosporidium parvum/drug effects , Nigella sativa/chemistry , Phytotherapy , Animals , Anti-Infective Agents/pharmacology , Azithromycin/pharmacology , Azithromycin/therapeutic use , Cattle , Cattle Diseases/parasitology , Cryptosporidiosis/drug therapy , Feces/parasitology , Female , Male , Parasite Egg Count/veterinary , Plant Preparations/pharmacology , Plant Preparations/therapeutic use , Powders , Seeds/chemistry , Treatment Outcome , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use
18.
J Parasitol ; 98(1): 213-5, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21854220

ABSTRACT

The purpose of the present study was to obtain seroepidemiological information on the Neospora caninum infection status of sheep and goats in different areas of Punjab Province and Azad Kashmir (Pakistan). A cross-sectional study, with the use of a competitive ELISA, showed an overall 27.7% (35 of 128) (95% confidence interval [CI] ± 7.7%) and 8.6% (13 of 142) (95% CI ± 4.6%) seroprevalence of N. caninum antibodies in sheep and goats, respectively. The difference in seroprevalence between sheep and goat populations was statistically significant (P < 0.05). The highest prevalence (37.4% ± 13.2%) was recorded in the tailless breed of sheep.


Subject(s)
Antibodies, Protozoan/blood , Coccidiosis/veterinary , Goat Diseases/epidemiology , Neospora/immunology , Sheep Diseases/epidemiology , Animals , Breeding , Coccidiosis/epidemiology , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Goat Diseases/parasitology , Goats , Male , Pakistan/epidemiology , Seroepidemiologic Studies , Sheep , Sheep Diseases/parasitology
19.
Mol Cell Biol ; 32(1): 173-85, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22037766

ABSTRACT

ß-Catenin-independent Wnt signaling pathways have been implicated in the regulation of planar cell polarity (PCP) and convergent extension (CE) cell movements. Prickle, one of the core proteins of these pathways, is known to asymmetrically localize proximally at the adherens junction of Drosophila melanogaster wing cells and to locally accumulate within plasma membrane subdomains in cells undergoing CE movements during vertebrate development. Using mass spectrometry, we have identified the Ste20 kinase Mink1 as a Prickle-associated protein and found that they genetically interact during the establishment of PCP in the Drosophila eye and CE in Xenopus laevis embryos. We show that Mink1 phosphorylates Prickle on a conserved threonine residue and regulates its Rab5-dependent endosomal trafficking, a process required for the localized plasma membrane accumulation and function of Prickle. Mink1 also was found to be important for the clustering of Vangl within plasma membrane puncta. Our results provide a link between Mink and the Vangl-Prickle complex and highlight the importance of Prickle phosphorylation and endosomal trafficking for its function during Wnt-PCP signaling.


Subject(s)
LIM Domain Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Amino Acid Sequence , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Endosomes/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/analysis , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/analysis , Membrane Proteins/analysis , Membrane Proteins/metabolism , Molecular Sequence Data , Phosphorylation , Protein Serine-Threonine Kinases/analysis , Protein Transport , Tumor Suppressor Proteins/analysis , Xenopus/embryology , Xenopus/metabolism , Xenopus Proteins/metabolism
20.
J Biol Chem ; 286(47): 40922-33, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-21969374

ABSTRACT

The calcium-sensing receptor (CaSR) is a family C G protein-coupled receptor that is activated by elevated levels of extracellular divalent cations. The CaSR couples to members of the G(q) family of G proteins, and in the endocrine system this receptor is instrumental in regulating the release of parathyroid hormone from the parathyroid gland and calcitonin from thyroid cells. Here, we demonstrate that in medullary thyroid carcinoma cells, the CaSR promotes cellular adhesion and migration via coupling to members of the integrin family of extracellular matrix-binding proteins. Immunopurification and mass spectrometry, co-immunoprecipitation, and co-localization studies showed that the CaSR and ß1-containing integrins are components of a macromolecular protein complex. In fibronectin-based cell adhesion and migration assays, the CaSR-positive allosteric modulator NPS R-568 induced a concentration-dependent increase in cell adhesion and migration; both of these effects were blocked by a specific CaSR-negative allosteric modulator. These effects were mediated by integrins because they were blocked by a peptide inhibitor of integrin binding to fibronectin and ß1 knockdown experiments. An analysis of intracellular signaling pathways revealed a key role for CaSR-induced phospholipase C activation and the release of intracellular calcium. These results demonstrate for the first time that an ion-sensing G protein-coupled receptor functionally couples to the integrins and, in conjunction with intracellular calcium release, promotes cellular adhesion and migration in tumor cells. The significance of this interaction is further highlighted by studies implicating the CaSR in cancer metastasis, axonal growth, and stem cell attachment, functions that rely on integrin-mediated cell adhesion.


Subject(s)
Cell Movement , Integrins/metabolism , Receptors, Calcium-Sensing/metabolism , Allosteric Regulation/drug effects , Aniline Compounds/pharmacology , Animals , Calcium/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Fibronectins/metabolism , Gene Expression Regulation/drug effects , Humans , Integrin beta Chains/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , Oligopeptides/pharmacology , Phenethylamines , Propylamines , Protein Transport/drug effects , Rats , Receptors, Calcium-Sensing/chemistry , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...