Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(1): e0297054, 2024.
Article in English | MEDLINE | ID: mdl-38271382

ABSTRACT

Human Papillomavirus (HPV)-35 accounts for up 10% of cervical cancers in Sub-Saharan Africa. We herein assessed the genetic diversity of HPV35 in HIV-negative women from Chad (identified as #CHAD) and HIV-infected men having sex with men (MSM) in the Central African Republic (CAR), identified as #CAR. Ten HPV35 DNA from self-collected genital secretions (n = 5) and anal margin samples (n = 5) obtained from women and MSM, respectively, were sequenced using the ABI PRISM® BigDye Sequencing technology. All but one HPV35 strains belonged to the A2 sublineage, and only #CAR5 belonged to A1. HPV35 from #CAR had higher L1 variability compared to #CHAD (mean number of mutations: 16 versus 6). L1 of #CAR5 showed a significant variability (2.29%), suggesting a possible intra-type divergence from HPV35H. Three (BC, DE, and EF) out of the 5 capsid loops domains remained totally conserved, while FG- and HI- loops of #CAR exhibited amino acid variations. #CAR5 also showed the highest LCR variability with a 16bp insertion at binding sites of the YY1. HPV35 from #CHAD exhibited the highest variability in E2 gene (P<0.05). E6 and E7 oncoproteins remained well conserved. There is a relative maintenance of a well conserved HPV35 A2 sublineage within heterosexual women in Chad and MSM with HIV in the Central African Republic.


Subject(s)
Alphapapillomavirus , HIV Infections , Human Papillomavirus Viruses , Papillomavirus Infections , Sexual and Gender Minorities , Male , Humans , Female , Central African Republic , Cross-Sectional Studies , Homosexuality, Male , Papillomaviridae/genetics , HIV Infections/epidemiology , Genetic Variation , Papillomavirus Infections/epidemiology
2.
Antimicrob Agents Chemother ; 67(3): e0086822, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36786598

ABSTRACT

Enterovirus infections are life-threatening viral infections which occur mainly among children and are possible causes of viral outbreak. Until now, treatment and management of infections caused by members of the genus Enterovirus largely depended on supportive care, and no antiviral medications are currently approved for the treatment of most of these infections. The urgency of discovering new therapeutic options for the treatment of enterovirus infection is increasing. In the present study, we identified that trans-2-hexenoic acid (THA), a natural product from a dietary source, possesses antiviral activity against coxsackievirus B (CVB) and enterovirus A71 (EV-A71) in a dose-dependent manner. We found that THA possesses antiviral activity at 50% effective concentrations (EC50) of 2.9 µM and 3.21 µM against CVB3 and EV-A71 infections, respectively. The time of addition assay revealed that THA inhibits both CVB3 and EV-A71 replication at the entry stage of infection. Additional results from this study further suggest that THA inhibits viral replication by blocking viral entry. Given that THA has received approval as a food additive, treatment of enterovirus infections with THA might be a safe therapeutic option or could pave the way for semisynthetic manufacturing of more antiviral drugs in the future.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Child , Humans , Antiviral Agents/pharmacology , Enterovirus Infections/drug therapy , Virus Replication
3.
Front Microbiol ; 13: 875485, 2022.
Article in English | MEDLINE | ID: mdl-35495645

ABSTRACT

Coxsackievirus group B (CVB) is a member of the genus Enterovirus in the family Picornaviridae. CVB infection has been implicated as a major etiologic agent of viral myocarditis, dilated cardiomyopathy, meningitis, and pancreatitis among children and young adults. Until date, no antiviral agent has been licensed for the treatment of Coxsackievirus infection. In an effort to identify antiviral agents against diseases caused by the CVB, we found that ethyl 3-hydroxyhexanoate (EHX), a volatile compound present in fruits and food additives, is a potent antiviral compound. In this study, we demonstrated that EHX treatment significantly inhibits CVB replication both in vivo and in vitro. Furthermore, EHX possesses antiviral activity at 50% effective concentration (EC50) of 1.2 µM and 50% cytotoxicity (CC50) of 25.6 µM, yielding a selective index (SI) value as high as 20.8. Insights into the mechanism of antiviral activity of EHX showed that it acts at the step of viral RNA replication. Since EHX has received approval as food additives, treatment of CVB-related infections with EHX might be a safe therapeutic option and may be a promising strategy for the development of semi-synthetic antiviral drugs for viral diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...