Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Mol Cancer ; 23(1): 105, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755661

ABSTRACT

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Subject(s)
Drug Resistance, Neoplasm , Mechanistic Target of Rapamycin Complex 2 , Melanoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Rapamycin-Insensitive Companion of mTOR Protein , Humans , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Melanoma/genetics , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Proto-Oncogene Proteins B-raf/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Drug Resistance, Neoplasm/genetics , Mice , Animals , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic , Mutation , Down-Regulation , Proteomics/methods
2.
Cancer Immunol Res ; 12(4): 440-452, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38331413

ABSTRACT

Tumor neoantigens (nAg) represent a promising target for cancer immunotherapy. The identification of nAgs that can generate T-cell responses and have therapeutic activity has been challenging. Here, we sought to unravel the features of nAgs required to induce tumor rejection. We selected clinically validated Great Ape-derived adenoviral vectors (GAd) as a nAg delivery system for differing numbers and combinations of nAgs. We assessed their immunogenicity and efficacy in murine models of low to high disease burden, comparing multi-epitope versus mono-epitope vaccines. We demonstrated that the breadth of immune response is critical for vaccine efficacy and having multiple immunogenic nAgs encoded in a single vaccine improves efficacy. The contribution of each single neoantigen was examined, leading to the identification of 2 nAgs able to induce CD8+ T cell-mediated tumor rejection. They were both active as individual nAgs in a setting of prophylactic vaccination, although to different extents. However, the efficacy of these single nAgs was lost in a setting of therapeutic vaccination in tumor-bearing mice. The presence of CD4+ T-cell help restored the efficacy for only the most expressed of the two nAgs, demonstrating a key role for CD4+ T cells in sustaining CD8+ T-cell responses and the necessity of an efficient recognition of the targeted epitopes on cancer cells by CD8+ T cells for an effective antitumor response. This study provides insight into understanding the determinants of nAgs relevant for effective treatment and highlights features that could contribute to more effective antitumor vaccines. See related Spotlight by Slingluff Jr, p. 382.


Subject(s)
Cancer Vaccines , Neoplasms , Mice , Animals , Tumor Burden , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Epitopes , Antigens, Neoplasm
3.
Front Oncol ; 13: 1170264, 2023.
Article in English | MEDLINE | ID: mdl-37265795

ABSTRACT

Breast cancer is a highly heterogeneous disease, at both inter- and intra-tumor levels, and this heterogeneity is a crucial determinant of malignant progression and response to treatments. In addition to genetic diversity and plasticity of cancer cells, the tumor microenvironment contributes to tumor heterogeneity shaping the physical and biological surroundings of the tumor. The activity of certain types of immune, endothelial or mesenchymal cells in the microenvironment can change the effectiveness of cancer therapies via a plethora of different mechanisms. Therefore, deciphering the interactions between the distinct cell types, their spatial organization and their specific contribution to tumor growth and drug sensitivity is still a major challenge. Dissecting intra-tumor heterogeneity is currently an urgent need to better define breast cancer biology and to develop therapeutic strategies targeting the microenvironment as helpful tools for combined and personalized treatment. In this review, we analyze the mechanisms by which the tumor microenvironment affects the characteristics of tumor heterogeneity that ultimately result in drug resistance, and we outline state of the art preclinical models and emerging technologies that will be instrumental in unraveling the impact of the tumor microenvironment on resistance to therapies.

4.
J Immunother Cancer ; 11(4)2023 04.
Article in English | MEDLINE | ID: mdl-37117006

ABSTRACT

BACKGROUND: Tumor microenvironment (TME) represents a critical hurdle in cancer immunotherapy, given its ability to suppress antitumor immunity. Several efforts are made to overcome this hostile TME with the development of new therapeutic strategies modifying TME to boost antitumor immunity. Among these, cytokine-based approaches have been pursued for their known immunomodulatory effects on different cell populations within the TME. IL-12 is a potent pro-inflammatory cytokine that demonstrates striking immune activation and tumor control but causes severe adverse effects when systemically administered. Thus, local administration is considered a potential strategy to achieve high cytokine concentrations at the tumor site while sparing systemic adverse effects. METHODS: Modified Vaccinia Ankara (MVA) vector is a potent inducer of pro-inflammatory response. Here, we cloned IL-12 into the genome of MVA for intratumoral immunotherapy, combining the immunomodulatory properties of both the vector and the cargo. The antitumor activity of MVA-IL-12 and its effect on TME reprogramming were investigated in preclinical tumor models. RNA sequencing (RNA-Seq) analysis was performed to assess changes in the TME in treated and distal tumors and the effect on the intratumoral T-cell receptor repertoire. RESULTS: Intratumoral injection of MVA-IL-12 resulted in strong antitumor activity with the complete remission of established tumors in multiple murine models, including those resistant to checkpoint inhibitors. The therapeutic activity of MVA-IL-12 was associated with very low levels of circulating cytokine. Effective TME reprogramming was demonstrated on treatment, with the reduction of immunosuppressive M2 macrophages while increasing pro-inflammatory M1, and recruitment of dendritic cells. TME switch from immunosuppressive into immunostimulatory environment allowed for CD8 T cells priming and expansion leading to tumor attack. CONCLUSIONS: Intratumoral administration of MVA-IL-12 turns immunologically 'cold' tumors 'hot' and overcomes resistance to programmed cell death protein-1 blockade.


Subject(s)
Interleukin-12 , Neoplasms , Humans , Mice , Animals , Interleukin-12/genetics , Interleukin-12/pharmacology , Tumor Microenvironment , Vaccinia virus/genetics , Cytokines/metabolism , Neoplasms/pathology
5.
Oncoimmunology ; 11(1): 2086752, 2022.
Article in English | MEDLINE | ID: mdl-35756841

ABSTRACT

Cancer stem cells (CSCs) are the main drivers of disease progression and chemotherapy resistance in breast cancer. Tumor progression and chemoresistance might then be prevented by CSC-targeted therapies. We previously demonstrated that Toll-like Receptor (TLR)2 is overexpressed in CSCs and fuels their self-renewal. Here, we show that high TLR2 expression is linked to poor prognosis in breast cancer patients, therefore representing a candidate target for breast cancer treatment. By using a novel mammary cancer-prone TLR2KO mouse model, we demonstrate that TLR2 is required for CSC pool maintenance and for regulatory T cell induction. Accordingly, cancer-prone TLR2KO mice display delayed tumor onset and increased survival. Transplantation of TLR2WT and TLR2KO cancer cells in either TLR2WT or TLR2KO hosts shows that tumor initiation is mostly sustained by TLR2 expression in cancer cells. TLR2 host deficiency partially impairs cancer cell growth, implying a pro-tumorigenic effect of TLR2 expression in immune cells. Finally, we demonstrate that doxorubicin-induced release of HMGB1 activates TLR2 signaling in cancer cells, leading to a chemotherapy-resistant phenotype. Unprecedented use of TLR2 inhibitors invivo reduces tumor growth and potentiates doxorubicin efficacy with no negative impact on the host immune system, opening new perspectives for the treatment of breast cancer patients.


Subject(s)
Breast Neoplasms , Toll-Like Receptor 2 , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Disease Progression , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Female , Humans , Mice , Mice, Knockout , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism
6.
Front Cell Dev Biol ; 10: 841646, 2022.
Article in English | MEDLINE | ID: mdl-35620053

ABSTRACT

NF-κB is diffusely recognized as a transcriptional factor able to modulate the expression of various genes involved in a broad spectrum of cellular functions, including proliferation, survival and migration. NF-κB is, however, also acting outside the nucleus and beyond its ability to binds to DNA. NF-κB is indeed found to localize inside different cellular organelles, such as mitochondria, endoplasmic reticulum, Golgi and nucleoli, where it acts through different partners in mediating various biological functions. Here, we discuss the relationship linking NF-κB to the cellular organelles, and how this crosstalk between cellular organelles and NF-κB signalling may be evaluated for anticancer therapies.

7.
Cancer Lett ; 534: 215612, 2022 05 28.
Article in English | MEDLINE | ID: mdl-35259458

ABSTRACT

21q22.2-3 deletion is the most common copy number alteration in prostate cancer (PCa). The genomic rearrangement results in the androgen-dependent de novo expression of ETS-related gene (ERG) in prostate cancer cells, a condition promoting tumor progression to advanced stages of the disease. Interestingly, ERG expression characterizes 5-30% of tumor precursor lesions - High Grade Prostatic Intraepithelial Neoplasia (HGPIN) - where its role remains unclear. Here, by combining organoids technology with Click-chemistry coupled Mass Spectrometry, we demonstrate a prominent role of ERG in remodeling the protein secretome of prostate progenitors. Functionally, by lowering autocrine Wnt-4 signaling, ERG represses canonical Wnt pathway in prostate progenitors, and, in turn, promotes the accumulation of DNA double strand breaks via Gsk3ß-dependent degradation of the tumor suppressor Nkx3.1. On the other hand, by shaping extracellular paracrine signals, ERG strengthens the pro-oxidative transcriptional signature of inflammatory macrophages, which we demonstrate to infiltrate pre-malignant ERG positive prostate lesions. These findings highlight previously unrecognized functions of ERG in undermining adult prostate progenitor niche through cell autonomous and non-autonomous mechanisms. Overall, by supporting the survival and proliferation of prostate progenitors in the absence of growth stimuli and promoting the accumulation of DNA damage through destabilization of Nkx3.1, ERG could orchestrate the prelude to neoplastic transformation.


Subject(s)
Glycogen Synthase Kinase 3 beta , Homeodomain Proteins , Prostate , Prostatic Neoplasms , Transcription Factors , Transcriptional Regulator ERG , Animals , Genomic Instability , Glycogen Synthase Kinase 3 beta/genetics , Homeodomain Proteins/genetics , Male , Mice , Oncogene Proteins , Prostate/pathology , Prostatic Neoplasms/pathology , Trans-Activators/metabolism , Transcription Factors/genetics , Transcriptional Regulator ERG/genetics
8.
Oncogene ; 41(10): 1456-1467, 2022 03.
Article in English | MEDLINE | ID: mdl-35042959

ABSTRACT

In the tumor microenvironment, Cancer Associated Fibroblasts (CAFs) become activated by cancer cells and increase their secretory activity to produce soluble factors that contribute to tumor cells proliferation, invasion and dissemination to distant organs. The pro-tumorigenic transcription factor STAT3 and its canonical inducer, the pro-inflammatory cytokine IL-6, act conjunctly in a positive feedback loop that maintains high levels of IL-6 secretion and STAT3 activation in both tumor and stromal cells. Here, we demonstrate that STAT3 is essential for the pro-tumorigenic functions of murine breast cancer CAFs both in vitro and in vivo, and identify a STAT3 signature significantly enriched for genes encoding for secreted proteins. Among these, ANGPTL4, MMP13 and STC-1 were functionally validated as STAT3-dependent mediators of CAF pro-tumorigenic functions by different approaches. Both in vitro and in vivo CAFs activities were moreover impaired by MMP13 inhibition, supporting the feasibility of a therapeutic approach based on inhibiting STAT3-induced CAF-secreted proteins. The clinical potential of such an approach is supported by the observation that an equivalent CAF-STAT3 signature in humans is expressed at high levels in breast cancer stromal cells and characterizes patients with a shorter disease specific survival, including those with basal-like disease.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Angiopoietin-Like Protein 4/genetics , Animals , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Female , Fibroblasts/metabolism , Glycoproteins , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Mice , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , Tumor Microenvironment/genetics
9.
Cancer Res ; 81(18): 4794-4807, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34193441

ABSTRACT

HSP90 is secreted by cancer cells into the extracellular milieu, where it exerts protumoral activities by activating extracellular substrate proteins and triggering autocrine signals through cancer cell surface receptors. Emerging evidence indicates that HSP90 co-chaperones are also secreted and may direct HSP90 extracellular activities. In this study, we found that the HSP90 co-chaperone Morgana is released by cancer cells and, in association with HSP90, induces cancer cell migration through TLR2, TLR4, and LRP1. In syngeneic cancer mouse models, a mAb targeting Morgana extracellular activity reduced primary tumor growth via macrophage-dependent recruitment of CD8+ T lymphocytes, blocked cancer cell migration, and inhibited metastatic spreading. Overall, these data define Morgana as a new player in the HSP90 extracellular interactome and suggest that Morgana may regulate HSP90 activity to promote cancer cell migration and suppress antitumor immunity. SIGNIFICANCE: This work suggests the potential therapeutic value of targeting the extracellular HSP90 co-chaperone Morgana to inhibit metastasis formation and enhance the CD8+ T-cell-mediated antitumor immune response.


Subject(s)
Cell Movement/drug effects , HSP90 Heat-Shock Proteins/metabolism , Immunity/drug effects , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Coculture Techniques , Cytotoxicity, Immunologic , Disease Models, Animal , Extracellular Space/metabolism , Heterografts , Humans , Macrophages/immunology , Macrophages/metabolism , Mice , Signal Transduction , Toll-Like Receptors/metabolism , Xenograft Model Antitumor Assays
10.
Cell Mol Life Sci ; 78(9): 4069-4083, 2021 May.
Article in English | MEDLINE | ID: mdl-33544155

ABSTRACT

In addition to exerting several essential house-keeping activities in the cell, heat shock proteins (HSPs) are crucial players in a well-structured molecular program activated in response to stressful challenges. Among the different activities carried out by HSPs during emergency, they reach the extracellular milieu, from where they scout the surroundings, regulate extracellular protein activity and send autocrine and paracrine signals. Cancer cells permanently experience stress conditions due to their altered equilibrium and behaviour, and constantly secrete heat shock proteins as a result. Other than supporting anti-tumour immunity, extracellular heat shock proteins (eHSPs), can also exacerbate cancer cell growth and malignancy by sustaining different cancer hallmarks. eHSPs are implicated in extracellular matrix remodelling, resistance to apoptosis, promotion of cell migration and invasion, induction of epithelial to mesenchymal transition, angiogenesis and activation of stromal cells, supporting ultimately, metastasis dissemination. A broader understanding of eHSP activity and contribution to tumour development and progression is leading to new opportunities in the diagnosis and treatment of cancer.


Subject(s)
Heat-Shock Proteins/metabolism , Neoplasms/pathology , ATP-Binding Cassette Transporters/metabolism , Cell Movement , Epithelial-Mesenchymal Transition , Extracellular Matrix/metabolism , Humans , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Neoplasms/metabolism , Toll-Like Receptors/metabolism , Tumor Microenvironment
11.
Mol Ther Methods Clin Dev ; 18: 62-72, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32577433

ABSTRACT

Myocarditis can lead to autoimmune disease, dilated cardiomyopathy, and heart failure, which is modeled in the mouse by cardiac myosin immunization (experimental autoimmune myocarditis [EAM]). Signal transducer and activator of transcription 3 (STAT3) systemic inhibition exerts both preventive and therapeutic effects in EAM, and STAT3 constitutive activation elicits immune-mediated myocarditis dependent on complement C3 and correlating with activation of the STAT3-interleukin 6 (IL-6) axis in the liver. Thus, liver-specific STAT3 inhibition may represent a therapeutic option, allowing to bypass the heart toxicity, predicted by systemic STAT3 inhibition. We therefore decided to explore the effectiveness of silencing liver Stat3 and C3 in preventing EAM onset and/or the recovery of cardiac functions. We first show that complement C3 and C5 genetic depletion significantly prevents the onset of spontaneous myocarditis, supporting the complement cascade as a viable target. In order to interfere with complement production and STAT3 activity specifically in the liver, we took advantage of liver-specific Stat3 or C3 small interfering (si)RNA nanoparticles, demonstrating that both siRNAs can significantly prevent myocarditis onset and improve the recovery of heart functions in EAM. Our data demonstrate that liver-specific Stat3/C3 siRNAs may represent a therapeutic option for autoimmune myocarditis and suggest that complement levels and activation might be predictive of progression to dilated cardiomyopathy.

12.
Cancers (Basel) ; 12(3)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192092

ABSTRACT

The establishment and spreading of cancer involve the acquirement of many biological functions including resistance to apoptosis, enhanced proliferation and the ability to invade the surrounding tissue, extravasate from the primary site, survive in circulating blood, and finally extravasate and colonize distant organs giving origin to metastatic lesions, the major cause of cancer deaths. Dramatic changes in the expression of protein coding genes due to altered transcription factors activity or to epigenetic modifications orchestrate these events, intertwining with a microRNA regulatory network that is often disrupted in cancer cells. microRNAs-143 and -145 represent puzzling players of this game, with apparently contradictory functions. They were at first classified as tumor suppressive due to their frequently reduced levels in tumors, correlating with cell survival, proliferation, and migration. More recently, pro-oncogenic roles of these microRNAs have been described, challenging their simplistic definition as merely tumor-suppressive. Here we review their known activities in tumors, whether oncogenic or onco-suppressive, and highlight how their expression and functions are strongly dependent on their complex regulation downstream and upstream of cytokines and growth factors, on the cell type of expression and on the specific tumor stage.

13.
Nat Commun ; 10(1): 2688, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217437

ABSTRACT

Neoantigens (nAgs) are promising tumor antigens for cancer vaccination with the potential of inducing robust and selective T cell responses. Genetic vaccines based on Adenoviruses derived from non-human Great Apes (GAd) elicit strong and effective T cell-mediated immunity in humans. Here, we investigate for the first time the potency and efficacy of a novel GAd encoding multiple neoantigens. Prophylactic or early therapeutic vaccination with GAd efficiently control tumor growth in mice. In contrast, combination of the vaccine with checkpoint inhibitors is required to eradicate large tumors. Gene expression profile of tumors in regression shows abundance of activated tumor infiltrating T cells with a more diversified TCR repertoire in animals treated with GAd and anti-PD1 compared to anti-PD1. Data suggest that effectiveness of vaccination in the presence of high tumor burden correlates with the breadth of nAgs-specific T cells and requires concomitant reversal of tumor suppression by checkpoint blockade.


Subject(s)
Adenoviridae/immunology , Antineoplastic Agents, Immunological/therapeutic use , Cancer Vaccines/therapeutic use , Neoplasms/therapy , Viral Vaccines/therapeutic use , Adenoviridae/genetics , Animals , Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/pharmacology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cell Line, Tumor/transplantation , Combined Modality Therapy/methods , Disease Models, Animal , Female , Humans , Immunotherapy/methods , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Treatment Outcome , Tumor Burden/drug effects , Tumor Burden/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , Viral Vaccines/genetics , Viral Vaccines/immunology
14.
Cancers (Basel) ; 11(1)2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30654518

ABSTRACT

Breast cancer is a heterogeneous disease whose clinical management is very challenging. Although specific molecular features characterize breast cancer subtypes with different prognosis, the identification of specific markers predicting disease outcome within the single subtypes still lags behind. Both the non-canonical Wingless-type MMTV Integration site (WNT) and the Signal Transducer and Activator of Transcription (STAT)3 pathways are often constitutively activated in breast tumors, and both can induce the small GTPase Ras Homolog Family Member U RhoU. Here we show that RhoU transcription can be triggered by both canonical and non-canonical WNT ligands via the activation of c-JUN N-terminal kinase (JNK) and the recruitment of the Specificity Protein 1 (SP1) transcription factor to the RhoU promoter, identifying for the first time SP1 as a JNK-dependent mediator of WNT signaling. RhoU down-regulation by silencing or treatment with JNK, SP1 or STAT3 inhibitors leads to impaired migration and invasion in basal-like MDA-MB-231 and BT-549 cells, suggesting that STAT3 and SP1 can cooperate to induce high RhoU expression and enhance breast cancer cells migration. Moreover, in vivo concomitant binding of STAT3 and SP1 defines a subclass of genes belonging to the non-canonical WNT and the Interleukin (IL)-6/STAT3 pathways and contributing to breast cancer aggressiveness, suggesting the relevance of developing novel targeted therapies combining inhibitors of the STAT3 and WNT pathways or of their downstream mediators.

15.
Cell Death Differ ; 26(5): 932-942, 2019 05.
Article in English | MEDLINE | ID: mdl-30042492

ABSTRACT

STAT3 is an oncogenic transcription factor exerting its functions both as a canonical transcriptional activator and as a non-canonical regulator of energy metabolism and mitochondrial functions. While both activities are required for cell transformation downstream of different oncogenic stimuli, they rely on different post-translational activating events, namely phosphorylation on either Y705 (nuclear activities) or S727 (mitochondrial functions). Here, we report the discovery of the unexpected STAT3 localization to the endoplasmic reticulum (ER), from where it modulates ER-mitochondria Ca2+ release by interacting with the Ca2+ channel IP3R3 and facilitating its degradation. The release of Ca2+ is of paramount importance for life/death cell decisions, as excessive Ca2+ causes mitochondrial Ca2+ overload, the opening of the mitochondrial permeability transition pore, and the initiation of the intrinsic apoptotic program. Indeed, STAT3 silencing enhances ER Ca2+ release and sensitivity to apoptosis following oxidative stress in STAT3-dependent mammary tumor cells, correlating with increased IP3R3 levels. Accordingly, basal-like mammary tumors, which frequently display constitutively active STAT3, show an inverse correlation between IP3R3 and STAT3 protein levels. These results suggest that STAT3-mediated IP3R3 downregulation in the ER crucially contributes to its anti-apoptotic functions via modulation of Ca2+ fluxes.


Subject(s)
Apoptosis/genetics , Calcium Signaling/genetics , Inositol 1,4,5-Trisphosphate Receptors/genetics , STAT3 Transcription Factor/genetics , Calcium/metabolism , Cell Death/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum Stress/genetics , Energy Metabolism/genetics , Gene Expression/genetics , Humans , Mitochondria/genetics , Mitochondria/metabolism , Proteolysis
16.
Int J Mol Sci ; 19(9)2018 Sep 18.
Article in English | MEDLINE | ID: mdl-30231582

ABSTRACT

The transcription factor signal transducer and activator of transcription (STAT)3 mediates the functions of cytokines, growth factors, and oncogenes under both physiological and pathological conditions. Uncontrolled/constitutive STAT3 activity is often detected in tumors of different types, where its role is mostly that of an oncogene, contributing in multiple ways to tumor transformation, growth, and progression. For this reason, many laboratories and pharmaceutical companies are making efforts to develop specific inhibitors. However, STAT3 has also been shown to act as a tumor suppressor in a number of cases, suggesting that its activity is strongly context-specific. Here, we discuss the bases that can explain the multiple roles of this factor in both physiological and pathological contexts. In particular, we focus on the following four features: (i) the distinct properties of the STAT3α and ß isoforms; (ii) the multiple post-translational modifications (phosphorylation on tyrosine or serine, acetylation and methylation on different residues, and oxidation and glutathionylation) that can affect its activities downstream of multiple different signals; (iii) the non-canonical functions in the mitochondria, contributing to the maintenance of energy homeostasis under stress conditions; and (iv) the recently discovered functions in the endoplasmic reticulum, where STAT3 contributes to the regulation of calcium homeostasis, energy production, and apoptosis.


Subject(s)
Cell Nucleus/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , STAT3 Transcription Factor/metabolism , Animals , Apoptosis , Cell Nucleus/genetics , Cell Nucleus/pathology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/pathology , Energy Metabolism , Humans , Mitochondria/genetics , Mitochondria/pathology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oncogenes , Protein Processing, Post-Translational , STAT3 Transcription Factor/analysis , STAT3 Transcription Factor/genetics
17.
Int J Mol Sci ; 19(1)2018 Jan 06.
Article in English | MEDLINE | ID: mdl-29316631

ABSTRACT

Signal Transducer and Activator of Transcription (STAT)3 has recently emerged as a key player in the development and pathogenesis of psoriasis and psoriatic-like inflammatory conditions. Indeed, STAT3 hyperactivation has been reported in virtually every cell type involved in disease initiation and maintenance, and this factor mediates the signal of most cytokines that are involved in disease pathogenesis, including the central Interleukin (IL)-23/IL-17/IL-22 axis. Despite the recent availability of effective biological agents (monoclonal antibodies) against IL-17 and IL-23, which have radically changed the current standard of disease management, the possibility of targeting either STAT3 itself or, even better, the family of upstream activators Janus kinases (JAK1, 2, 3, and TYK2) offers additional therapeutic options. Due to the oral/topical administration modality of these small molecule drugs, their lower cost, and the reduced risk of eliciting adverse immune responses, these compounds are being actively scrutinized in clinical settings. Here, we summarize the main pathological features of psoriatic conditions that provide the rationale for targeting the JAK/STAT3 axis in disease treatment.


Subject(s)
Psoriasis/pathology , STAT3 Transcription Factor/metabolism , Humans , Interleukin-17/metabolism , Interleukin-23/metabolism , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism , Protein Kinase Inhibitors/therapeutic use , Psoriasis/drug therapy , Psoriasis/metabolism , Signal Transduction , Th17 Cells/immunology , Th17 Cells/metabolism
18.
Cytokine ; 98: 42-50, 2017 10.
Article in English | MEDLINE | ID: mdl-28579221

ABSTRACT

The transcription factor signal transducer and activator of transcription (STAT) 3 is activated downstream of cytokines, growth factors and oncogenes to mediate their functions under both physiological and pathological conditions. In particular, aberrant/unrestrained STAT3 activity is detected in a wide variety of tumors, driving multiple pro-oncogenic functions. For that, STAT3 is widely considered as an oncogene and is the object of intense translational studies. One of the distinctive features of this factor is however, its ability to elicit different and sometimes contrasting effects under different conditions. In particular, STAT3 activities have been shown to be either pro-oncogenic or tumor-suppressive according to the tumor aetiology/mutational landscape, suggesting that the molecular bases underlining its functions are still incompletely understood. Here we discuss some of the properties that may provide the bases to explain STAT3 heterogeneous functions, and in particular how post-translational modifications contribute shaping its sub-cellular localization and activities, the cross talk between these activities and cell metabolic conditions, and finally how its functions can control the behaviour of both tumor and tumor microenvironment cell populations.


Subject(s)
Neoplasms/physiopathology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Animals , Autophagy , Cell Line, Tumor , Energy Metabolism , Humans , Mice , Protein Processing, Post-Translational , Signal Transduction , Tumor Microenvironment
19.
Cell Death Differ ; 24(10): 1750-1760, 2017 10.
Article in English | MEDLINE | ID: mdl-28644441

ABSTRACT

Transforming growth factor (TGF)-ß is one of the major inducers of epithelial to mesenchymal transition (EMT), a crucial program that has a critical role in promoting carcinoma's metastasis formation. MicroRNAs-143 and -145, which are both TGF-ß direct transcriptional targets, are essential for the differentiation of vascular smooth muscle cells (VSMC) during embryogenesis, a TGF-ß-dependent process reminiscent of EMT. Their role in adult tissues is however less well defined and even ambiguous, as their expression was correlated both positively and negatively with tumor progression. Here we show that high expression of both miRs-143 and -145 in mouse mammary tumor cells expressing constitutively active STAT3 (S3C) is involved in mediating their disrupted cell-cell junctions. Additionally, miR-143 appears to have a unique role in tumorigenesis by enhancing cell migration in vitro and extravasation in vivo while impairing anchorage-independent growth, which may explain the contradictory reports about its role in tumors. Accordingly, we demonstrate that overexpression of either miRNA in the non-transformed mammary epithelial NMuMG cells leads to upregulation of EMT markers and of several endogenous TGF-ß targets, downmodulation of a number of junction proteins and increased motility, correlating with enhanced basal and TGF-ß-induced SMAD-mediated transcription. Moreover, pervasive transcriptome perturbation consistent with the described phenotype was observed. In particular, the expression of several transcription factors involved in the mitogenic responses, of MAPK family members and, importantly, of several tight junction proteins and the SMAD co-repressor TGIF was significantly reduced. Our results provide important mechanistic insight into the non-redundant role of miRs-143 and -145 in EMT-related processes in both transformed and non-transformed cells, and suggest that their expression must be finely coordinated to warrant optimal migration/invasion while not interfering with cell growth.


Subject(s)
Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Co-Repressor Proteins/metabolism , Epithelial Cells/metabolism , Female , Mice , Mice, Transgenic , Neoplasm Invasiveness/genetics , Transforming Growth Factor beta/metabolism
20.
Exp Dermatol ; 24(1): 29-34, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25382846

ABSTRACT

STAT3, a pleiotropic transcription factor acting downstream of cytokines and growth factors, is known to enhance proliferation, migration, invasion and aerobic glycolysis in tumors upon aberrant activation. In the murine epidermis, STAT3 is necessary for experimentally induced carcinogenesis. Skin tumorigenesis is conversely enhanced by overexpression in keratinocytes of the constitutively active STAT3C mutant, which also induces robust, psoriasis-like epidermal hyperplasia. We show here that STAT3C expression at physiological levels in knock-in mice leads to mild epidermal hyperplasia and attenuated expression of terminal differentiation markers. Altered differentiation is confirmed in isolated primary epidermal keratinocytes in vitro, correlating with enhanced proliferative and clonogenic potential, attenuated senescence and, strikingly, high-frequency spontaneous immortalization. These results suggest that moderate levels of continuous STAT3 activation, which closely resemble those triggered by chronic inflammation or persistent growth factor stimulation, may establish a preneoplastic state in part by promoting the escape of epidermal progenitor cells from differentiation and senescence checkpoints.


Subject(s)
Cell Differentiation , Cellular Senescence , Epidermal Cells , Keratinocytes/metabolism , STAT3 Transcription Factor/metabolism , Animals , Animals, Newborn , Cell Movement , Cell Proliferation , Glycolysis , Hyperplasia/metabolism , Keratinocytes/cytology , Mice , Mice, Transgenic , Real-Time Polymerase Chain Reaction , Skin/metabolism , Skin Aging , Stem Cells/cytology , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...