Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem C Mater ; 11(24): 8161-8169, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37362026

ABSTRACT

We present the simple synthesis of a star-shape non-fullerene acceptor (NFA) for application in organic solar cells. This NFA possesses a D(A)3 structure in which the electron-donating core is an aza-triangulene unit and we report the first crystal structure for a star shape NFA based on this motive. We fully characterized this molecule's optoelectronic properties in solution and thin films, investigating its photovoltaic properties when blended with PTB7-Th as the electron donor component. We demonstrate that the aza-triangulene core leads to a strong absorption in the visible range with an absorption edge going from 700 nm in solution to above 850 nm in the solid state. The transport properties of the pristine molecule were investigated in field effect transistors (OFETs) and in blends with PTB7-Th following a Space-Charge-Limited Current (SCLC) protocol. We found that the mobility of electrons measured in films deposited from o-xylene and chlorobenzene are quite similar (up to 2.70 × 10-4 cm2 V-1 s-1) and that the values are not significantly modified by thermal annealing. The new NFA combined with PTB7-Th in the active layer of inverted solar cells leads to a power conversion efficiency of around 6.3% (active area 0.16 cm2) when processed from non-chlorinated solvents without thermal annealing. Thanks to impedance spectroscopy measurements performed on the solar cells, we show that the charge collection efficiency of the devices is limited by the transport properties rather than by recombination kinetics. Finally, we investigated the stability of this new NFA in various conditions and show that the star-shape molecule is more resistant against photolysis in the presence and absence of oxygen than ITIC.

2.
J Org Chem ; 87(5): 3276-3285, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35176857

ABSTRACT

We designed and synthesized a novel di(benz[f]indenone)-fused tetraazaanthracene derivative and isolated its two isomers, 1a and 1s, having anti and syn configurations, respectively. Their structure and that of the condensation reaction intermediates, anti-2a and syn-2s, were fully characterized using one- and two-dimensional nuclear magnetic resonance spectroscopy and single-crystal X-ray diffraction. The optical and electronic properties of 1a and 1s were investigated using ultraviolet-visible absorption and fluorescence spectroscopies, cyclic voltammetry, and time-dependent density functional theory calculations. The presence of the carbonyl and ethynyltris(isopropyl)silane groups endows the di(benzoindenone)-fused azaacene derivatives with a strong electron accepting character. With an electron affinity of approximately -3.7 eV, the two isomers represent attractive electron-deficient molecular systems for the generation of n-channel semiconducting materials. Organic field effect transistors of 1a and 1s showed electron transport, and organic solar cells gave a proof of concept of the potential of the two compounds as electron acceptor materials when they are paired with an electron donor polymer.

3.
ChemSusChem ; 14(17): 3502-3510, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34096201

ABSTRACT

The synthesis of four non-fullerene acceptors (NFAs) with a "A-π-D-π-A" structure, in which the electron-donating core is extended, was achieved. The molecules differed by the nature of the solubilizing groups on the π-spacer and/or the presence of fluorine atoms on the peripheral electron-accepting units. The optoelectronic properties of the molecules were characterized in solution, in thin film, and in photovoltaic devices. The nature of the solubilizing groups had a minor influence on the optoelectronic properties but affected the organization in the solid state. On the other hand, the fluorine atoms influenced the optoelectronics properties and increased the photo-stability of the molecules in thin films. Compared to reference ITIC, the extended molecules showed a wider absorption across the visible range and higher lowest unoccupied molecular orbital energy levels. The photovoltaic performances of the four NFAs were assessed in binary blends using PM6 (PBDB-T-2F) as the donating polymer and in ternary blends with ITIC-4F. Solar cells (active area 0.27 cm2 ) showed power conversion efficiencies of up to 11.1 % when ternary blends were processed from non-halogenated solvents, without any thermal post-treatment or use of halogenated additives, making this process compatible with industrial requirements.

4.
ACS Appl Mater Interfaces ; 12(25): 28404-28415, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32476409

ABSTRACT

The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.

SELECTION OF CITATIONS
SEARCH DETAIL
...