Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
JACS Au ; 3(10): 2703-2708, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37885569

ABSTRACT

Tropane alkaloids are an important class of biologically active small molecules characterized by their 8-azabicyclo[3.2.1]octane core. Because of their numerous medicinal applications, microbial biosynthesis and a variety of chemical syntheses have been designed for individual family members. However, current approaches are not amenable to late-stage structural diversification at N8, C3, C6, or C7, positions that are critical for modulating the biological properties of these molecules. Here, we describe a general approach to the synthesis of tropane alkaloids and their analogues that relies on the construction of the 8-azabicyclo[3.2.1]octane core through aziridination of a cycloheptadiene intermediate, followed by vinyl aziridine rearrangement. Using this strategy, we synthesized six tropane alkaloids and several analogues in only 5-7 steps. Given that the tropane alkaloid scopolamine has been reported to promote structural neuroplasticity and produce antidepressant effects, we tested five tropane-containing compounds for their ability to promote dendritic spine growth in cultured cortical neurons. We found that the orientation of the C3 substituent may play a role in the psychoplastogenic effects of tropane alkaloids. Our work provides a robust platform for producing tropane analogs for future structure-activity relationship studies.

2.
Front Psychiatry ; 12: 727117, 2021.
Article in English | MEDLINE | ID: mdl-34671279

ABSTRACT

Psychedelics have inspired new hope for treating brain disorders, as they seem to be unlike any treatments currently available. Not only do they produce sustained therapeutic effects following a single administration, they also appear to have broad therapeutic potential, demonstrating efficacy for treating depression, post-traumatic stress disorder (PTSD), anxiety disorders, substance abuse disorder, and alcohol use disorder, among others. Psychedelics belong to a more general class of compounds known as psychoplastogens, which robustly promote structural and functional neural plasticity in key circuits relevant to brain health. Here we discuss the importance of structural plasticity in the treatment of neuropsychiatric diseases, as well as the evidence demonstrating that psychedelics are among the most effective chemical modulators of neural plasticity studied to date. Furthermore, we provide a theoretical framework with the potential to explain why psychedelic compounds produce long-lasting therapeutic effects across a wide range of brain disorders. Despite their promise as broadly efficacious neurotherapeutics, there are several issues associated with psychedelic-based medicines that drastically limit their clinical scalability. We discuss these challenges and how they might be overcome through the development of non-hallucinogenic psychoplastogens. The clinical use of psychedelics and other psychoplastogenic compounds marks a paradigm shift in neuropsychiatry toward therapeutic approaches relying on the selective modulation of neural circuits with small molecule drugs. Psychoplastogen research brings us one step closer to actually curing mental illness by rectifying the underlying pathophysiology of disorders like depression, moving beyond simply treating disease symptoms. However, determining how to most effectively deploy psychoplastogenic medicines at scale will be an important consideration as the field moves forward.

3.
Gene ; 799: 145808, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34224831

ABSTRACT

We set out to uncover transcriptome and chromatin landscape changes that occur in HER2 + breast cancer (BC) cells upon acquiring resistance to trastuzumab. RNA-seq analysis was applied to two independently-derived BC cell lines with acquired resistance to trastuzumab (SKBr3.HerR and BT-474HerR) and their parental drug-sensitive cell lines (SKBr3 and BT-474). Chromatin landscape analysis indicated that the most significant increase in accessibility in resistant cells occurs in PPP1R1B within a segment spanning introns 1b through intron 3. Footprint analysis of this segment revealed that FoxJ3 (within intron 2) and Pou5A1/Sox2 (within inton 3) transcription factor motifs are protected in resistant cells. Overall, 344 shared genes were upregulated in both resistant cell lines relative to their parental counterparts and 453 shared genes were downregulated in both resistant cell lines relative to their parental counterparts. In resistant cells, genes associated with autophagy and mitochondria organization are upregulated and genes associated with ribosome assembly and cell cycle are downregulated relative to parental cells. The five top upregulated genes in drug-resistant breast cancer cells are APOD, AZGP1, ETV5, ALPP, and PPP1R1B. This is the first report of increased chromatin accessibility within PPP1R1B associated with its t-Darpp transcript increase, and points to a possible mechanism for its activation in trastuzumab-resistant cells.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Chromatin/drug effects , Drug Resistance, Neoplasm/genetics , Trastuzumab/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Autophagy/drug effects , Autophagy/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Chromatin/genetics , Dopamine and cAMP-Regulated Phosphoprotein 32/genetics , Drug Resistance, Neoplasm/drug effects , Female , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks , Humans , Receptor, ErbB-2/metabolism , SOXB1 Transcription Factors/genetics
4.
Biochem Pharmacol ; 160: 71-79, 2019 02.
Article in English | MEDLINE | ID: mdl-30552871

ABSTRACT

The PPP1R1B gene is located on chromosome 17q12 (39,626,208-39,636,626[GRCh38/hg38]), which codes for multiple transcripts and two experimentally-documented proteins Darpp-32 and t-Darpp. Darpp-32 (Dopamine and cAMP Regulated Phosphoprotein), discovered in the early 1980s, is a protein whose phosphorylation is upregulated in response to cAMP in dopamine-responsive tissues in the brain. It's phosphorylation profile modulates its ability to bind and inhibit Protein Phosphatase 1 activity, which, in turn, controls the activity of hundreds of phosphorylated proteins. PPP1R1B knockout mice exhibit subtle learning defects. In 2002, the second protein product of PPP1R1B was discovered in gastric cancers: t-Darpp (truncated Darpp-32). The start codon of t-Darpp is amino acid residue 37 of Darpp-32 and it lacks the domain responsible for modulating Protein Phosphatase 1. Aside from gastric cancers, t-Darpp and/or Darpp-32 is overexpressed in tumor cells from breast, colon, esophagus, lung and prostate tissues. More than one research team has demonstrated that these proteins, through mechanisms that to date remain cloudy, activate AKT, a protein whose phosphorylation leads to cell survival and blocks apoptosis. Furthermore, in Her2 positive breast cancers (an aggressive form of breast cancer), t-Darpp/Darpp-32 overexpression causes resistance to the frequently-administered anti-Her2 drug, trastuzumab (Herceptin), likely through AKT activation. Here we briefly describe how Darpp-32 and t-Darpp were discovered and report on the current state of knowledge of their involvement in cancers. We present a case for the development of an anti-t-Darpp therapeutic agent and outline the unique challenges this endeavor will likely encounter.


Subject(s)
Dopamine and cAMP-Regulated Phosphoprotein 32/chemistry , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Neoplasms/genetics , Neurons/metabolism , Animals , Cell Movement , Dopamine and cAMP-Regulated Phosphoprotein 32/genetics , Gene Expression Regulation , Humans , Mice, Transgenic , Signal Transduction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...