Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 14(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36826880

ABSTRACT

(i) Objective: The present study aimed to compare the electrochemical corrosion resistance of six different types of fixed lingual retainer wires used as fixed retention appliances in an in vitro study. (ii) Methods: In the study, two different Ringer solutions, with pH 7 and pH 3.5, were used. Six groups were formed with five retainer wires in each group. In addition, 3-braided stainless steel, 6-braided stainless steel, Titanium Grade 1, Titanium Grade 5, Gold, and Dead Soft retainer wires were used. The corrosion current density (icorr), corrosion rate (CR), and polarization resistance (Rp) were determined from the Tafel polarization curves. (iii) Results: The corrosion current density of the Gold retainer group was statistically higher than the other retainer groups in both solutions (p < 0.05). The corrosion rate of the Dead Soft retainer group was statistically higher than the other retainer groups in both solutions (p < 0.05). The polarization resistance of the Titanium Grade 5 retainer group was statistically higher than the other retainer groups in both solutions (p < 0.05). As a result of Scanning Electron Microscope (SEM) images, pitting corrosion was not observed in the Titanium Grade 1, Titanium Grade 5 and Gold retainer groups, while pitting corrosion was observed in the other groups. (iv) Conclusion: From a corrosion perspective, although the study needs to be evaluated in vivo, the Titanium Grade 5 retainer group included is in this in vitro study may be more suitable for clinical use due to its high electrochemical corrosion resistance and the lack of pitting corrosion observed in the SEM images.

2.
Biosensors (Basel) ; 12(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36551140

ABSTRACT

The world is facing a global financial loss and health effects due to food quality adulteration and contamination, which are seriously affecting human health. Synthetic colors, flavors, and preservatives are added to make food more attractive to consumers. Therefore, food safety has become one of the fundamental needs of mankind. Due to the importance of food safety, the world is in great need of developing desirable and accurate methods for determining the quality of food. In recent years, the electrochemical methods have become more popular, due to their simplicity, ease in handling, economics, and specificity in determining food safety. Common food contaminants, such as pesticides, additives, and animal drug residues, cause foods that are most vulnerable to contamination to undergo evaluation frequently. The present review article discusses the electrochemical detection of the above food contaminants using different carbon nanomaterials, such as carbon nanotubes (CNTs), graphene, ordered mesoporous carbon (OMC), carbon dots, boron doped diamond (BDD), and fullerenes. The voltammetric methods, such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV), have been proven to be potential methods for determining food contaminants. The use of carbon-based electrodes has the added advantage of electrochemically sensing the food contaminants due to their excellent sensitivity, specificity, large surface area, high porosity, antifouling, and biocompatibility.


Subject(s)
Nanostructures , Nanotubes, Carbon , Humans , Nanotubes, Carbon/chemistry , Food Safety , Electrochemical Techniques , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...