Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
RSC Adv ; 12(11): 6640, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35427097

ABSTRACT

[This corrects the article DOI: 10.1039/C3RA23176C.].

2.
ACS Omega ; 7(9): 8198, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35284761

ABSTRACT

[This corrects the article DOI: 10.1021/acsomega.7b01635.].

3.
Sci Rep ; 11(1): 10886, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34035324

ABSTRACT

Irradiation induced damage in materials is highly detrimental and is a critical issue in several vital science and technology fields, e.g., the nuclear and space industries. While the effect of dimensionality (nano/bulk) of materials on its radiation damage tolerance has been receiving tremendous interest, studies have only concentrated on low energy (nuclear energy loss (Sn) dominant) and high energy (electronic energy loss (Se) dominant) irradiations independently (wherein, interestingly, the effect is opposite). In-fact, research on radiation damage in general has almost entirely focused only on independent irradiations with low and/or high energy particles till date, and investigations under simultaneous impingement of energetic particles (which also correspond to the actual irradiation conditions during real-world applications) are very scarce. The present work elucidates, taking cubic zirconia as a model system, the effect of grain size (26 nm vs 80 nm) on the radiation tolerance against simultaneous irradiation with low energy (900 keV I) and high energy (27 meV Fe) particles/ions; and, in particular, introduces the enhancement in the radiation damage tolerance upon downsizing from bulk to nano dimension. This result is interpreted within the framework of the thermal-spike model after considering (1) the fact that there is essentially no spatial and time overlap between the damage events of the two 'simultaneous' irradiations, and (2) the influence of grain size on radiation damage against individual Sn and Se. The present work besides providing the first fundamental insights into how the grain size/grain boundary density inherently mediates the radiation response of a material to simultaneous Sn and Se deposition, also (1) paves the way for potential application of nano-crystalline materials in the nuclear industry (where simultaneous irradiations with low and high energy particles correspond to the actual irradiation conditions), and (2) lays the groundwork for understanding the material behaviour under other simultaneous (viz. Sn and Sn, Se and Se) irradiations.

4.
Phys Chem Chem Phys ; 21(40): 22482-22490, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31588473

ABSTRACT

We report here the stabilization of the cubic phase under ambient conditions in the thin films of zirconia synthesized by electron beam evaporation. The cubic phase stabilization was achieved without the use of chemical stabilizers and/or concurrent ion beam bombardment. Films of two different thicknesses (660 nm and 140 nm) were deposited. While the 660 nm as-deposited films were in the cubic phase, as indicated by X-ray diffraction and Raman spectroscopy, the 140 nm as-deposited films were amorphous and the transformation to the cubic phase was obtained after thermal annealing. Extended X-ray absorption fine structure measurements revealed the existence of oxygen vacancies in the local structure surrounding zirconium for all films. However, the amount of these oxygen vacancies was found to be significantly higher for the amorphous films as compared to that for the films in the cubic phase (660 nm as-deposited and 140 nm annealed films). The stabilization of the cubic phase is attributed to the breaking of the oxygen-zirconium bonds due to the presence of the oxygen vacancies, which results in the suppression of the soft X2- mode of vibration of the oxygen sub-lattice. Our first-principles modeling under the framework of density functional theory shows that the cubic structure with oxygen vacancies is indeed more stable under ambient conditions than its pristine (without vacancies) counterpart due to breaking of the oxygen bonds. The requirement of a critical amount of these vacancies for cubic phase stabilization is discussed.

5.
ACS Appl Mater Interfaces ; 10(36): 30631-30639, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30130396

ABSTRACT

Helicobacter pylori is a Gram-negative, spiral shaped, microaerophilic bacteria that colonizes human gastric mucosa and causes various gastric diseases. In this work, the utilization of ion irradiated zinc oxide tetrapods (ZnO-T) based biohybrid interface accentuates the development of an electrochemical immunosensor for the fast and sensitive detection of H. pylori. After coating of (ZnO-T) over the surface of screen printed electrode (SP-AuE) through electrodeposition, the ZnO-T/SP-AuE was irradiated with N2+ ion of energy 100 keV. The ion irradiation significantly enhances the conductivity of ZnO-T coated SP-AuE. The revamped SP-AuE is further used for establishing an immunosensor interface based upon immobilization of the CagA antigen on ZnO-T electrodeposited over the surface of SP-AuE. The sensing interface demonstrated good linearity (0.2 ng/mL to 50 ng/mL) and limit of detection (0.2 ng/mL). The ion beam irradiated ZnO-T based immunosensor showed significantly high conductivity and enhanced the analytical properties of the working electrode in terms of the sensitivity, detection limit, and response time. A study on the comparison of irradiated and pristine electrode is performed for amperometric sensing of H. pylori. In addition, the significance of work conducted on ion irradiated ZnO-T based interfaces provides a basis of further development of electrochemical immunosensors.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques , Helicobacter pylori/physiology , Zinc Oxide/chemistry , Electrodes , Helicobacter pylori/chemistry , Helicobacter pylori/isolation & purification , Humans , Limit of Detection
6.
ACS Omega ; 3(1): 917-928, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-31457938

ABSTRACT

Through nanochannels are created in the polymer/hybrid films by irradiating swift heavy ions followed by selective chemical etching of the amorphous latent track caused by irradiation. The dimensions of the nanochannels are varied from 30 to 100 nm by either using small (lithium) and large (silver) size of swift heavy ions with high energy (80 MeV) or by embedding few percentage of two-dimensional nanoparticle in the polymer matrix. The side walls of the nanochannels are grafted with polystyrene using the free radicals created during irradiation. Polystyrene graft is functionalized by tagging sulfonate group in the benzene ring of polystyrene to make the nanochannels conducting and hydrophilic. The proof of grafting and functionalization is shown through various spectroscopic techniques. The relaxation behavior and thermal stability of graft polymer within the nanochannel are shown through different thermal measurements. Nanoclay in nanohybrid nucleates the piezoelectric phase in the polymer matrix whose extent is further increased in grafted and functionalized specimen. Functionalized nanochannels exclusively facilitate proton conducting, whereas the remaining part of the film is electroactive, making it as a smart membrane. Greater water uptake, ion exchange capacity (IEC), high activation energy (8.3 × 103 J mol-1), and high proton conduction (3.5 S m-1) make these functionalized nanohybrid film a superior membrane. Membrane electrode assembly has been made to check the suitability of these membranes for fuel cell application. Open circuit voltage and potential are significantly high for nanohybrid membrane (0.6 V) as compared to pure polymer (0.53 V). Direct methanol fuel cell testing using the membrane assembly exhibit a considerable high power density of ∼400 W m-2, making these developed membranes suitable for fuel cell application and providing the ability to replace standard membrane like Nafion, as the methanol permeability is low, thus raising the higher selectivity parameter of the nanohybrid membrane.

7.
Phys Chem Chem Phys ; 19(36): 24886-24895, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28869273

ABSTRACT

Skutterudites are emerging as potential candidates that show high efficiency and thus provide an ideal platform for research. The properties of nanostructured films of skutterudites are different from those of the corresponding bulk. The present study reports the evolution of nanostructured single-phase CoSb3 fabricated by using low-energy ion irradiation of Co/Sb bilayer films and subsequent annealing at an optimized temperature and their Seebeck coefficients (S). The effects of ion beam parameters with annealing on the phase evolution and nanostructure modifications were studied. An increase in Xe+ ion fluence resulted in complete mixing of Co/Sb on postannealing forming flower-like nanostructures of single phase CoSb3. The temperature-dependent electrical resistivity (ρ) increases with the ion fluence because of defect creation which further increases on postannealing due to surface nanostructuring. The S of these films of CoSb3 is found to be higher and this is attributed to the formation of a uniform layer of nanostructured CoSb3 alloy thin film. The S and Hall coefficients of all these films are negative implying that they are n-type semiconductors.

8.
Phys Chem Chem Phys ; 19(34): 23229-23238, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28825757

ABSTRACT

Surface re-organization in nanodimensional fluoride (LiF and BaF2) thin films is observed under dense electronic excitation produced by swift heavy ion (SHI) irradiation. The irradiation was performed at an angle of less than 15° with respect to the film surface while keeping the sample at liquid nitrogen temperature. The surface of the irradiated samples was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM) complemented by energy dispersive X-ray spectroscopy (EDX). Detailed analyses indicate that the surface starts cracking at lower fluence. With an increase in the ion fluence, the materials shrinking and surface re-structuring lead to lamellae periodic structures. The average width of the wall decreases, while the separation and the height of the structures increase with the fluence. The composition of the lamellae walls and the gap in between were analyzed by EDX. At the highest fluence of irradiation, a strong signal of the substrate and negligible signals of F and Ba are observed between the walls of the lamellae structures, which shows that the entire deposited material is removed and the Si substrate is completely exposed to the ion beam. It is also observed that the substrate remains unaffected by SHI irradiation and does not undergo any structural transformation as evident by cross-sectional SEM micrographs. Such surface re-organization is not expected in fluoride thin films due to their non-amorphizable nature even at very high fluence SHI irradiation. The concept of grain rotation under SHI irradiation is used to explain the re-organization phenomena in such non-amorphizable materials.

9.
Phys Chem Chem Phys ; 17(37): 24427-37, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26339691

ABSTRACT

An investigation was carried out to understand the phase evolution and study the structural, morphological, optical and electrical properties of Co-Sb alloys fabricated by two different approaches: (a) thermal annealing and (b) ion-beam mixing followed by post annealing. The as-deposited and 100 MeV Ag ion beam irradiated Co/Sb bilayer thin films were subjected to thermal annealing from 200 to 400 °C for 1 hour. The Rutherford backscattering spectrometry (RBS) results showed partial mixing for the thermally annealed films and complete mixing for the irradiated and post annealed films at 400 °C. The XRD and RAMAN measurements indicated the formation of Co-Sb alloy, with ∼70% concentration of CoSb3 phase in the irradiated post annealed sample at 400 °C. The band gaps of the annealed and post irradiated annealed Co-Sb alloys were determined using UV-visible spectroscopy. Electrical and thermoelectric power measurements were performed in the temperature range of 300-420 K. It was observed that the alloys formed by ion-beam induced mixing exhibited higher electrical conductivity and thermoelectric power than the as-deposited and thermally annealed Co/Sb bilayer thin films.

10.
Beilstein J Nanotechnol ; 5: 1691-8, 2014.
Article in English | MEDLINE | ID: mdl-25383280

ABSTRACT

Zn-silica nanocomposite thin films with varying Zn metal content, deposited by atom beam sputtering technique were subjected to 100 MeV Ag ion irradiation. Rutherford backscattering spectrometry reveals the loss of Zn with irradiation, which is observed to be greater from thin films with lower Zn content. The sputtered species collected on carbon-coated transmission electron microscopy (TEM) grids consist of Zn nanoparticles of sizes comparable to those present in the nanocomposite thin film. The process of size-dependent electronic sputtering of Zn is explained on the basis of an inelastic thermal spike model. The possibility of direct cluster emission is explained by pressure spike built inside the track, initiated by a temperature spike.

11.
ACS Appl Mater Interfaces ; 3(5): 1398-401, 2011 May.
Article in English | MEDLINE | ID: mdl-21545102

ABSTRACT

Ion flux dependent swift heavy ions (SHI) induced structural changes have been reported for pristine poly(vinylidene fluoride) (PVDF). Ordering phenomena has been observed first followed by its transformation from α to ß-form (polar metastable piezoelectric phase). The ordering of (020) plane become prominent at higher ion flux SHI irradiation and its further increase induces structural change from α to ß phase as revealed by XRD and FTIR analyses. Structural changes are also supported by morphological evidence and thermal studies before and after SHI irradiation.

12.
Nanotechnology ; 22(23): 235305, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21483048

ABSTRACT

Quasi-aligned gold nanodots with a periodicity of ∼ 40 nm have been synthesized on a silica substrate by oblique deposition of gold on fast argon atom-beam-created nanoripples of wavelength 40 nm and subsequent annealing. The size distribution of these aligned nanodots resulting from oblique deposition at 85° of 0.5 nm Au film perpendicular to ripples is narrower than the similar deposition on a flat surface. The deposition and annealing process was simulated with a three-dimensional kinetic lattice Monte Carlo technique in order to understand the formation of aligned nanodots. The atomistic simulation and the experimental results suggest that there is an optimal thickness which can result in nanodots aligned along the ripples in the case of depositions perpendicular to the ripples. The nanodots formed after annealing of the films deposited parallel to ripples or on flat surface lack alignment.

13.
J Phys Chem B ; 113(34): 11632-41, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19653685

ABSTRACT

Poly(vinylidene fluoride-co-hexafluoropropylene) (HFP) nanocomposites with layered silicate have been synthesized via the melt extrusion route. The intriguing nanostructure, crystalline structure, morphology, and thermal and mechanical properties of the nanocomposites have been studied and compared critically with pristine polymer. HFP forms intercalated or partially exfoliated nanostructure (or both) in the presence of nanoclay, depending on its concentration. The bombardment of high-energy swift, heavy ions (SHI) on HFP and its nanocomposites has been explored in a wide range of fluence. The nanoclay induces the piezoelectric beta-phase in bulk HFP, and the structure remains intact upon SHI irradiation. SHI irradiation degrades pure polymer, but the degradation is suppressed radically in nanocomposites. The heat of fusion of pristine HFP has drastically been reduced upon SHI irradiation, whereas there are relatively minute changes in nanocomposites. The coarsening on the surface and bulk of HFP and its nanocomposite films upon SHI irradiation has been measured quantitatively by using atomic force microscopy. The degradation has been considerably suppressed in nanocomposites through cross-linking of polymer chains, providing a suitable high-energy, radiation-resistant polymeric material. A mechanism for this behavior originating from the swelling test and gel fraction (chemical cross-linking) as a result of SHI irradiation has been illustrated.


Subject(s)
Ions/chemistry , Nanostructures/chemistry , Polyvinyls/chemistry , Silicates/chemistry , Crystallography, X-Ray , Fullerenes/chemistry , Models, Molecular , Particle Size , Polyvinyls/chemical synthesis , Surface Properties
14.
ACS Appl Mater Interfaces ; 1(2): 311-8, 2009 Feb.
Article in English | MEDLINE | ID: mdl-20353218

ABSTRACT

Poly(vinylidene fluoride) (PVDF) has been made radiation-resistant through a nanocomposite (NC) route. The bombardment of high-energy swift heavy ions (SHI) on PVDF and its NCs with layered silicate has been studied in a range of fluences. The degradation of PVDF after SHI irradiation is suppressed radically in NCs. PVDF forms an intercalated nanostructure in the presence of nanoclay and, further, the ion fluence raises the extent of intercalation. The crystallinity and the heat of fusion of pristine PVDF have drastically been reduced after SHI irradiation, while there are relatively small changes in NCs even at higher fluences. The metastable piezoelectric beta form of PVDF gets stabilized by the presence of layered silicate, and the structure is retained upon SHI irradiation. The clay platelets act as nucleating agents, and SHI irradiation causes two crystallization temperatures for the samples exposed to high fluences. The damages created on the surface and bulk of PVDF and its NC films upon SHI irradiation have been measured quantitatively by using atomic force microscopy. The pitting dimensions and degradation are enhanced significantly beyond 10(11) ions/cm(2) fluence for pristine PVDF, which limits the use of PVDF for any ion irradiation application. The degradation is considerably suppressed in NCs, providing a suitable high-energy radiation-resistant thermoplastic polymer.

SELECTION OF CITATIONS
SEARCH DETAIL
...