Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6529, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36319638

ABSTRACT

Age is the leading risk factor for prevalent diseases and death. However, the relation between age-related physiological changes and lifespan is poorly understood. We combined analytical and machine learning tools to describe the aging process in large sets of longitudinal measurements. Assuming that aging results from a dynamic instability of the organism state, we designed a deep artificial neural network, including auto-encoder and auto-regression (AR) components. The AR model tied the dynamics of physiological state with the stochastic evolution of a single variable, the "dynamic frailty indicator" (dFI). In a subset of blood tests from the Mouse Phenome Database, dFI increased exponentially and predicted the remaining lifespan. The observation of the limiting dFI was consistent with the late-life mortality deceleration. dFI changed along with hallmarks of aging, including frailty index, molecular markers of inflammation, senescent cell accumulation, and responded to life-shortening (high-fat diet) and life-extending (rapamycin) treatments.


Subject(s)
Frailty , Mice , Animals , Unsupervised Machine Learning , Aging/physiology , Longevity , Neural Networks, Computer
2.
Nat Commun ; 12(1): 2765, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035236

ABSTRACT

We investigated the dynamic properties of the organism state fluctuations along individual aging trajectories in a large longitudinal database of CBC measurements from a consumer diagnostics laboratory. To simplify the analysis, we used a log-linear mortality estimate from the CBC variables as a single quantitative measure of the aging process, henceforth referred to as dynamic organism state indicator (DOSI). We observed, that the age-dependent population DOSI distribution broadening could be explained by a progressive loss of physiological resilience measured by the DOSI auto-correlation time. Extrapolation of this trend suggested that DOSI recovery time and variance would simultaneously diverge at a critical point of 120 - 150 years of age corresponding to a complete loss of resilience. The observation was immediately confirmed by the independent analysis of correlation properties of intraday physical activity levels fluctuations collected by wearable devices. We conclude that the criticality resulting in the end of life is an intrinsic biological property of an organism that is independent of stress factors and signifies a fundamental or absolute limit of human lifespan.


Subject(s)
Adaptation, Physiological/physiology , Aging/physiology , Biomarkers/blood , Longevity/physiology , Resilience, Psychological , Adult , Aged , Aged, 80 and over , Aging/psychology , Blood Cell Count/methods , Female , Health Status , Humans , Longitudinal Studies , Male , Middle Aged , Young Adult
3.
Aging (Albany NY) ; 10(10): 2973-2990, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30362959

ABSTRACT

We performed a systematic evaluation of the relationships between locomotor activity and signatures of frailty, morbidity, and mortality risks using physical activity records from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) and UK BioBank (UKB). We proposed a statistical description of the locomotor activity tracks and transformed the provided time series into vectors representing physiological states for each participant. The Principal Component Analysis of the transformed data revealed a winding trajectory with distinct segments corresponding to subsequent human development stages. The extended linear phase starts from 35-40 years old and is associated with the exponential increase of mortality risks according to the Gompertz mortality law. We characterized the distance traveled along the aging trajectory as a natural measure of biological age and demonstrated its significant association with frailty and hazardous lifestyles, along with the remaining lifespan and healthspan of an individual. The biological age explained most of the variance of the log-hazard ratio that was obtained by fitting directly to mortality and the incidence of chronic diseases. Our findings highlight the intimate relationship between the supervised and unsupervised signatures of the biological age and frailty, a consequence of the low intrinsic dimensionality of the aging dynamics.


Subject(s)
Actigraphy , Aging , Frailty/diagnosis , Geriatric Assessment/methods , Locomotion , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Frail Elderly , Frailty/mortality , Frailty/physiopathology , Humans , Male , Middle Aged , Models, Biological , Models, Statistical , Nutrition Surveys , Predictive Value of Tests , Risk Assessment , Risk Factors , Time Factors , United Kingdom , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...