Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474298

ABSTRACT

The rapid increase in the antibiotic resistance of microorganisms, capable of causing diseases in humans as destroying cultural heritage sites, is a great challenge for modern science. In this regard, it is necessary to develop fundamentally novel and highly active compounds. In this study, a series of N4-alkylcytidines, including 5- and 6-methylcytidine derivatives, with extended alkyl substituents, were obtained in order to develop a new generation of antibacterial and antifungal biocides based on nucleoside derivatives. It has been shown that N4-alkyl 5- or 6-methylcytidines effectively inhibit the growth of molds, isolated from the paintings in the halls of the Ancient Russian Paintings of the State Tretyakov Gallery, Russia, Moscow. The novel compounds showed activity similar to antiseptics commonly used to protect works of art, such as benzalkonium chloride, to which a number of microorganisms have acquired resistance. It was also shown that the activity of N4-alkylcytidines is comparable to that of some antibiotics used in medicine to fight Gram-positive bacteria, including resistant strains of Staphylococcus aureus and Mycobacterium smegmatis. N4-dodecyl-5- and 6-methylcytidines turned out to be the best. This compound seems promising for expanding the palette of antiseptics used in painting, since quite often the destruction of painting materials is caused by joint fungi and bacteria infection.


Subject(s)
Anti-Infective Agents, Local , Disinfectants , Paintings , Humans , Disinfectants/pharmacology , Bacteria , Fungi , Anti-Bacterial Agents
2.
ChemMedChem ; 18(21): e202300366, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37707314

ABSTRACT

The emergence of drug-resistant strains of pathogenic microorganisms necessitates the creation of new drugs. A series of uridine derivatives containing an extended substituent at the C-5 position as well as C-5 alkyloxymethyl, alkylthiomethyl, alkyltriazolylmethyl, alkylsulfinylmethyl and alkylsulfonylmethyl uridines were obtained in order to explore their antimicrobial properties and solubility. It has been shown that new ribonucleoside derivatives have an order of magnitude better solubility in water compared to their 2'-deoxy analogues and effectively inhibit the growth of a number of Gram-positive bacteria, including resistant strains of Mycobacterium smegmatis (MIC=15-200 µg/mL) and Staphylococcus aureus (MIC=25-100 µg/mL). Their activity is comparable to that of some antibiotics used in medicine.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Uridine/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Gram-Positive Bacteria , Gram-Negative Bacteria
3.
Materials (Basel) ; 15(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36363375

ABSTRACT

Microorganisms are one of the main factors in the deterioration of cultural heritage, in particular art paintings. The antiseptics currently used in painting have significant limitations due to insufficient effectiveness or increased toxicity and interaction with art materials. In this regard, the actual challenge is the search for novel materials that effectively work against microorganisms in the composition with painting materials and do not change their properties. Chitosan has pronounced antimicrobial properties but was not used previously as an antiseptic for paintings. In our study we developed a number of mock layers based on sturgeon glue, supplemented which chitosan (molecular weight 25 kDa or 45 kDa), standard antiseptics for paintings (positive controls) or without additives (negative control). According to Fourier transform infrared spectroscopy and atomic force microscopy, the addition of chitosan did not significantly affect the optical and surface properties of this material. The ability of chitosan to effectively protect paintings was shown after inoculation on the created mock-up layers of 10 fungi-destructors of tempera painting, previously isolated from cultural heritage of the of the 15-16th centuries in the State Tretyakov Gallery, on the created mock layers. Our study demonstrated the principled opportunity of using chitosan in the composition of painting materials to prevent biodeterioration for the first time.

4.
Biology (Basel) ; 11(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35741405

ABSTRACT

The transformation of steroids by microorganisms is widely used in medical biotechnology. A huge group of filamentous fungi is one of the most promising taxa for screening new biocatalytic reactions in order to obtain pharmaceutically significant steroids. In this work, we screened 10 filamentous fungi-destructors of egg tempera for the ability to biotransform androst-4-en-3,17-dione (AD) during cultivation in a liquid nutrient medium or in a buffer solution. These taxonomically unrelated strains, belonging to the classes Eurotiomycetes, Dothideomycetes and Sordariomycetes, are dominant representatives of the microbiome from halls where works of tempera painting are stored in the State Tretyakov Gallery (STG, Moscow, Russia). Since the binder of tempera paints, egg yolk, contains about 2% cholesterol, these degrading fungi appear to be a promising group for screening for steroid converting activity. It turned out that all the studied fungi-destructors are able to transform AD. Some strains showed transformation efficiency close to the industrial strain Curvularia lunata RNCIM F-981. In total, 33 steroids formed during the transformation of AD were characterized, for 19 of them the structure was established by gas chromatography/mass spectrometry analysis. In this work, we have shown for the first time that fungi-destructors of tempera paintings can efficiently transform steroids.

5.
Eur J Med Chem ; 215: 113212, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33582576

ABSTRACT

The emergence of drug-resistant strains of pathogenic microorganisms necessitates the creation of new drugs. In order to find new compounds that effectively inhibit the growth of pathogenic bacteria and fungi, we synthesized a set of N4-derivatives of cytidine, 2'-deoxycytidine and 5-metyl-2'-deoxycytidine bearing extended N4-alkyl and N4-phenylalkyl groups. The derivatives demonstrate activity against a number of Gram-positive bacteria, including Mycobacterium smegmatis (MIC = 24-200 µM) and Staphylococcus aureus (MIC = 50-200 µM), comparable with the activities of some antibiotics in medical use. The most promising compound appeared to be N4-dodecyl-5-metyl-2'-deoxycytidine 4h with activities of 24 and 48 µM against M. smegmatis and S. aureus, respectively, and high inhibitory activity of 0.5 mM against filamentous fungi that can, among other things, damage works of art, such as tempera painting. Noteworthy, some of other synthesized compounds are active against fungal growth with the inhibitory concentration in the range of 0.5-3 mM.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Cytidine/analogs & derivatives , Cytidine/pharmacology , A549 Cells , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/toxicity , Antifungal Agents/chemical synthesis , Antifungal Agents/toxicity , Bacteria/drug effects , Cytidine/toxicity , Drug Discovery , Fungi/drug effects , Humans , Microbial Sensitivity Tests
6.
PLoS One ; 15(4): e0230591, 2020.
Article in English | MEDLINE | ID: mdl-32240187

ABSTRACT

In this study, we investigated biodeterioration of materials used in tempera painting by analyzing the structure of the microbiome in ancient tempera paintings exhibited in State Tretyakov Gallery, Moscow, Russia. Samples were obtained from 16th-century paintings, including a grand Russian Orthodox icon "The Church Militant" (all exhibits were without visible signs of biodeterioration), and from surrounding walls and ceilings (with vast zones of visible microbial growth). A number of microorganisms isolated from visible signs of environmental bio-damage were also detected in tempera paintings kept in temperature- and humidity-controlled conditions unfavorable for the growth of microflora. To determine the biodegrading potential of the microbiome for tempera paintings, we developed a set of mock layers from paintwork materials used in tempera painting of 16th century and their modern analogues and inoculated them with cultures containing filamentous fungi and bacteria. The susceptibility to microbial degradation of individual tempera painting materials was examined by micro-Fourier Transform Infrared (FTIR) spectroscopy, which enabled detection of even invisible signs of biodeterioration. The results indicate that the microorganisms isolated from paintings and surrounding areas in the museum are capable of causing significant damage of various tempera materials, among which varnishes were the most resistant; however, the addition of antiseptic (sodium pentachlorophenolate) can inhibit microbial growth on sturgeon glue.


Subject(s)
Bacteria/growth & development , Fungi/growth & development , Paint/analysis , Paint/microbiology , Paintings/history , Bacteria/isolation & purification , Biodegradation, Environmental , Fungi/isolation & purification , History, 16th Century , Humans , Russia , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...