Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cochrane Database Syst Rev ; 2: CD012843, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36808096

ABSTRACT

BACKGROUND: Chronic rhinosinusitis, with or without nasal polyps, can have a major impact on a person's quality of life. Treatment is usually conservative and may include nasal saline, intranasal corticosteroids, antibiotics or systemic corticosteroids. If these treatments fail endoscopic sinus surgery can be considered. During surgery, visibility of the surgical field is important for the identification of important anatomic landmarks and structures that contribute to safety. Impaired visualisation can lead to complications during surgery, inability to complete the operation or a longer duration of surgery. Different methods are used to decrease intraoperative bleeding, including induced hypotension, topical or systemic vasoconstrictors or total intravenous anaesthesia. Another option is tranexamic acid, an antifibrinolytic agent, which can be administered topically or intravenously. OBJECTIVES: To assess the effects of peri-operative tranexamic acid versus no therapy or placebo on operative parameters in patients with chronic rhinosinusitis (with or without nasal polyps) who are undergoing functional endoscopic sinus surgery (FESS). SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Trials Register; Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 10 February 2022. SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing intravenous, oral or topical tranexamic acid with no therapy or placebo in the treatment of patients (adults and children) with chronic rhinosinusitis, with or without nasal polyps, undergoing FESS. DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. Primary outcome measures were surgical field bleeding score (e.g. Wormald or Boezaart grading system), intraoperative blood loss and significant adverse effects (seizures or thromboembolism within 12 weeks of surgery). Secondary outcomes were duration of surgery, incomplete surgery, surgical complications and postoperative bleeding (placing of packing or revision surgery) in the first two weeks after surgery. We performed subgroup analyses for methods of administration, different dosages, different forms of anaesthesia, use of thromboembolic prophylaxis and children versus adults. We evaluated each included study for risk of bias and used GRADE to assess the certainty of the evidence. MAIN RESULTS: We included 14 studies in the review, with a total of 942 participants. Sample sizes in the included studies ranged from 10 to 170. All but two studies included adult patients (≥ 18 years). Two studies included children. Most studies had more male patients (range 46.6% to 80%). All studies were placebo-controlled and four studies had three treatment arms. Three studies investigated topical tranexamic acid; the other studies reported the use of intravenous tranexamic acid. For our primary outcome, surgical field bleeding score measured with the Boezaart or Wormald grading score, we pooled data from 13 studies. The pooled result demonstrated that tranexamic acid probably reduces the surgical field bleeding score, with a standardised mean difference (SMD) of -0.87 (95% confidence interval (CI) -1.23 to -0.51; 13 studies, 772 participants; moderate-certainty evidence). A SMD below -0.70 represents a large effect (in either direction). Tranexamic acid may result in a slight reduction in blood loss during surgery compared to placebo with a mean difference (MD) of -70.32 mL (95% CI -92.28 to -48.35 mL; 12 studies, 802 participants; low-certainty evidence). Tranexamic acid probably has little to no effect on the development of significant adverse events (seizures or thromboembolism) within 24 hours of surgery, with no events in either group and a risk difference (RD) of 0.00 (95% CI -0.02 to 0.02; 8 studies, 664 participants; moderate-certainty evidence). However, there were no studies reporting significant adverse event data with a longer duration of follow-up. Tranexamic acid probably results in little difference in the duration of surgery with a MD of -13.04 minutes (95% CI -19.27 to -6.81; 10 studies, 666 participants; moderate-certainty evidence). Tranexamic acid probably results in little to no difference in the incidence of incomplete surgery, with no events in either group and a RD of 0.00 (95% CI -0.09 to 0.09; 2 studies, 58 participants; moderate-certainty evidence) and likely results in little to no difference in surgical complications, again with no events in either group and a RD of 0.00 (95% CI -0.09 to 0.09; 2 studies, 58 participants; moderate-certainty evidence), although these numbers are too small to draw robust conclusions. Tranexamic acid may result in little to no difference in the likelihood of postoperative bleeding (placement of packing or revision surgery within three days of surgery) (RD -0.01, 95% CI -0.04 to 0.02; 6 studies, 404 participants; low-certainty evidence). There were no studies with longer follow-up. AUTHORS' CONCLUSIONS: There is moderate-certainty evidence to support the beneficial value of topical or intravenous tranexamic acid during endoscopic sinus surgery with respect to surgical field bleeding score. Low- to moderate-certainty evidence suggests a slight decrease in total blood loss during surgery and duration of surgery. Whilst there is moderate-certainty evidence that tranexamic acid does not lead to more immediate significant adverse events compared to placebo, there is no evidence regarding the risk of serious adverse events more than 24 hours after surgery. There is low-certainty evidence that tranexamic acid may not change postoperative bleeding. There is not enough evidence available to draw robust conclusions about incomplete surgery or surgical complications.


Subject(s)
Nasal Polyps , Tranexamic Acid , Adult , Child , Humans , Administration, Intranasal , Adrenal Cortex Hormones/therapeutic use , Hemorrhage , Nasal Polyps/drug therapy , Tranexamic Acid/therapeutic use
2.
Allergy ; 77(7): 2163-2174, 2022 07.
Article in English | MEDLINE | ID: mdl-35038765

ABSTRACT

BACKGROUND: Non-allergic rhinitis (NAR) can be subdivided into several phenotypes: rhinorrhea of the elderly, rhinitis medicamentosa, smokers', occupational, hormonal, drug-induced, gustatory, and idiopathic rhinitis. There are two pathophysiological endotypes of NAR: inflammatory and neurogenic. Phenotypes may serve as an indicator of an underlying endotype and, therefore, help to guide the treatment. The prevalence of each phenotype in the general population is currently unknown. METHODOLOGY/PRINCIPAL: Cross-sectional questionnaire-based study in the general population of the Netherlands. RESULTS: The prevalence of chronic rhinitis in the general population was 40% (N = 558, of those, 65% had NAR and 28% AR, in 7% allergy status is unknown). Individuals with NAR (N = 363) had significantly more complaints in October-February. Those with AR (N = 159) had significantly more complaints in April-August. The most common NAR phenotypes were idiopathic (39%) and rhinitis medicamentosa (14%), followed by occupational (8%), smokers' (6%), hormonal (4%), gustatory (4%), and rhinorrhea of the elderly (4%). The least prevalent phenotype was drug induced (1%). Nineteen percent of the NAR group could not be classified into any of the phenotypes. CONCLUSIONS: This is the first study to describe the prevalences of NAR phenotypes in the general population. AR and NAR have a distinct seasonality pattern with NAR being more prevalent in autumn/winter and AR in spring/summer. Our data on the prevalence of phenotypes may help clinicians to anticipate the type of patients at their clinic and help guide a tailored treatment approach. The high prevalence of rhinitis medicamentosa is alarming, since this is a potentially preventable phenotype.


Subject(s)
Rhinitis, Allergic , Rhinitis , Aged , Cross-Sectional Studies , Humans , Phenotype , Prevalence , Rhinitis/epidemiology , Rhinitis, Allergic/epidemiology , Rhinorrhea
4.
Cochrane Database Syst Rev ; 2019(11)2019 11 02.
Article in English | MEDLINE | ID: mdl-31677153

ABSTRACT

BACKGROUND: Non-allergic rhinitis is defined as dysfunction and non-infectious inflammation of the nasal mucosa that is caused by provoking agents other than allergens or microbes. It is common, with an estimated prevalence of around 10% to 20%. Patients experience symptoms of nasal obstruction, anterior rhinorrhoea/post-nasal drip and sneezing. Several subgroups of non-allergic rhinitis can be distinguished, depending on the trigger responsible for symptoms; these include occupation, cigarette smoke, hormones, medication, food and age. On a cellular molecular level different disease mechanisms can also be identified. People with non-allergic rhinitis often lack an effective treatment as a result of poor understanding and lack of recognition of the underlying disease mechanism. Intranasal corticosteroids are one of the most common types of medication prescribed in patients with rhinitis or rhinosinusitis symptoms, including those with non-allergic rhinitis. However, it is unclear whether intranasal corticosteroids are truly effective in these patients. OBJECTIVES: To assess the effects of intranasal corticosteroids in the management of non-allergic rhinitis. SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Register; Cochrane Central Register of Controlled Trials (CENTRAL 2019, Issue 7); PubMed; Ovid Embase; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 1 July 2019. SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing intranasal corticosteroids, delivered by any means and in any volume, with (a) placebo/no intervention or (b) other active treatments in adults and children (aged ≥ 12 years). DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. The primary outcomes were patient-reported disease severity and a significant adverse effect - epistaxis. Secondary outcomes were (disease-specific) health-related quality of life, objective measurements of airflow and other adverse events. We used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We included 34 studies (4452 participants); however, only 13 studies provided data for our main comparison, intranasal corticosteroids versus placebo. The participants were mainly defined as patients with perennial rhinitis symptoms and negative allergy tests. No distinction between different pheno- and endotypes could be made, although a few studies only included a specific phenotype such as pregnancy rhinitis, vasomotor rhinitis, rhinitis medicamentosa or senile rhinitis. Most studies were conducted in a secondary or tertiary healthcare setting. No studies reported outcomes beyond three months follow-up. Intranasal corticosteroid dosage in the review ranged from 50 µg to 2000 µg daily. Intranasal corticosteroids versus placebo Thirteen studies (2045 participants) provided data for this comparison. These studies used different scoring systems for patient-reported disease severity, so we pooled the data in each analysis using the standardised mean difference (SMD). Intranasal corticosteroid treatment may improve patient-reported disease severity as measured by total nasal symptom score compared with placebo at up to four weeks (SMD -0.74, 95% confidence interval (CI) -1.15 to -0.33; 4 studies; 131 participants; I2 = 22%) (low-certainty evidence). However, between four weeks and three months the evidence is very uncertain (SMD -0.24, 95% CI -0.67 to 0.20; 3 studies; 85 participants; I2 = 0%) (very low-certainty evidence). Intranasal corticosteroid treatment may slightly improve patient-reported disease severity as measured by total nasal symptom score change from baseline when compared with placebo at up to four weeks (SMD -0.15, 95% CI -0.25 to -0.05; 4 studies; 1465 participants; I2 = 35%) (low-certainty evidence). All four studies evaluating the risk of epistaxis showed that there is probably a higher risk in the intranasal corticosteroids group (65 per 1000) compared to placebo (31 per 1000) (risk ratio (RR) 2.10, 95% CI 1.24 to 3.57; 4 studies; 1174 participants; I2 = 0%) (moderate-certainty evidence). The absolute risk difference (RD) was 0.04 with a number needed to treat for an additional harmful outcome (NNTH) of 25 (95% CI 16.7 to 100). Only one study reported numerical data for quality of life. It did report a higher quality of life score in the intranasal corticosteroids group (152.3 versus 145.6; SF-12v2 range 0 to 800); however, this disappeared at longer-term follow-up (148.4 versus 145.6) (low-certainty evidence). Only two studies provided data for the outcome objective measurements of airflow. These data could not be pooled because they used different methods of outcome measurement. Neither found a significant difference between the intranasal corticosteroids and placebo group (rhinomanometry SMD -0.46, 95% CI -1.06 to 0.14; 44 participants; peak expiratory flow rate SMD 0.78, 95% CI -0.47 to 2.03; 11 participants) (very low-certainty evidence). Intranasal corticosteroids probably resulted in little or no difference in the risk of other adverse events compared to placebo (RR 0.99, 95% CI 0.87 to 1.12; 3 studies; 1130 participants; I2 = 0%) (moderate-certainty evidence). Intranasal corticosteroids versus other treatments Only one or a few studies assessed each of the other comparisons (intranasal corticosteroids versus saline irrigation, intranasal antihistamine, capsaicin, cromoglycate sodium, ipratropium bromide, intranasal corticosteroids combined with intranasal antihistamine, intranasal corticosteroids combined with intranasal antihistamine and intranasal corticosteroids with saline compared to saline alone). It is therefore uncertain whether there are differences between intranasal corticosteroids and other active treatments for any of the outcomes reported. AUTHORS' CONCLUSIONS: Overall, the certainty of the evidence for most outcomes in this review was low or very low. It is unclear whether intranasal corticosteroids reduce patient-reported disease severity in non-allergic rhinitis patients compared with placebo when measured at up to three months. However, intranasal corticosteroids probably have a higher risk of the adverse effect epistaxis. There are very few studies comparing intranasal corticosteroids to other treatment modalities making it difficult to draw conclusions.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/therapeutic use , Rhinitis/drug therapy , Administration, Intranasal , Humans , Nasal Sprays , Randomized Controlled Trials as Topic
5.
J Craniofac Surg ; 30(1): 137-140, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30480638

ABSTRACT

Ligation of the sphenopalatine and posterior nasal arteries is indicated for posterior epistaxis as initial treatment or when conservative measures fail. In some patients, a transnasal approach or its alternative transantral approach are not possible due to tumor filling the nasal corridor, pterygopalatine fossa, or maxillary sinus. Aim of this study was to evaluate feasibility of endoscopically assisted transoral approach for the ligation of the maxillary artery (MA). Six fresh cadaver specimens (12 sides), previously prepared with intravascular injections of colored latex, were dissected. A combined transnasal and transoral approach exposed the MA from the deep belly of the temporalis muscle laterally to its terminal branches medially. Anatomical relationships of the MA with the deep belly of the temporalis muscle and the lower head of the lateral pterygoid muscle, and feasibility of access to the MA via a transoral approach were assessed. In all specimens, the MA was found at the point where horizontal fibers of the lower head of the lateral pterygoid muscle cross the vertical fibers of the deep belly of the temporalis muscle. In 5 specimens, the artery ran anteriorly and laterally to lower head of the lateral pterygoid muscle, and in 1 specimen, it ran posteriorly and medially to this muscle, diving between its fibers. The modified endoscopically assisted transoral approach is feasible to ligate the MA. It can be used for proximal vascular control in cases when transnasal and transantral approaches are not viable.


Subject(s)
Angiofibroma/surgery , Blood Loss, Surgical/prevention & control , Chondrosarcoma/surgery , Endoscopy/methods , Head and Neck Neoplasms/surgery , Maxillary Artery/anatomy & histology , Maxillary Artery/surgery , Pterygoid Muscles/anatomy & histology , Temporal Muscle/anatomy & histology , Adolescent , Anatomic Landmarks , Cadaver , Feasibility Studies , Female , Humans , Ligation , Male , Middle Aged , Mouth , Pterygopalatine Fossa
6.
Curr Allergy Asthma Rep ; 18(4): 25, 2018 03 24.
Article in English | MEDLINE | ID: mdl-29574586

ABSTRACT

PURPOSE OF REVIEW: Chronic rhinosinusitis is a disease with high prevalence, significant impact on health-related quality of life (HRQoL) and it is associated with substantial healthcare and productivity costs. We face an urgent need to improve the level of disease control and achieve higher patient satisfaction and disease prevention. Precision medicine is increasingly recognized as the way forward in optimal patient care. The combination of personalized care, prevention of disease, prediction of success of treatment, and participation of the patient in the elaboration of the treatment plan is expected to guarantee the best possible therapeutic approach for individuals suffering from a chronic disabling condition. RECENT FINDINGS: This is a narrative review on the current state of endotypes, biomarkers, and targeted treatments in chronic inflammatory conditions of the nose and paranasal sinuses. Different phenotypes of rhinitis and chronic rhinosinusitis (CRS) have been described based on symptom severity and duration, atopy status, level of control, comorbidities, and presence or absence of nasal polyps in CRS. The underlying pathophysiological mechanisms are diverse, with different endotypes being recognized. Novel emerging therapies are targeting specific pathophysiological pathways or endotypes. This endotype-driven treatment approach requires careful selection of the patient population who might benefit from a specific treatment. This review provides a comprehensive overview of the current state of endotypes, biomarkers and targeted treatments in chronic inflammatory conditions of the nose and paranasal sinuses.


Subject(s)
Nasal Polyps , Precision Medicine , Sinusitis , Chronic Disease , Humans , Nasal Polyps/complications , Nasal Polyps/diagnosis , Nasal Polyps/therapy , Sinusitis/complications , Sinusitis/diagnosis , Sinusitis/therapy
7.
World Neurosurg ; 103: 457-464, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28434957

ABSTRACT

BACKGROUND: The lateral extended transsphenoidal endoscopic approach (LETEA) is used to remove tumors located lateral to the cavernous segment of the internal carotid artery under direct visual control and provides access to Meckel cave, pterygopalatine fossa, medial part of the middle cranial fossa, and orbit. We describe an extended transsphenoidal approach to the amygdalohippocampectomy through the pterygopalatine fossa. METHODS: The LETEA to the middle cranial fossa through the pterygopalatine fossa was studied on 3 injected human cadavers at the Burdenko Neurosurgery Institute in Moscow, Russia. RESULTS: LETEA and trepanation of the greater wing of the sphenoid bone allow access to the medial part of the middle cranial fossa. Medial segments of the temporal lobe (hippocampus and amygdala) and the temporal pole were removed under guidance of the 45° angled endoscope. CONCLUSIONS: LETEA through the pterygopalatine fossa is minimally invasive and provides direct access to the temporal pole and medial part of the temporal lobe. This approach may reduce risk of neurologic deficit and help to avoid cosmetic defects in the frontotemporal region associated with injury to temporal muscle and facial nerve injury as can occur during transcranial approaches. Disadvantages that limit application of LETEA include risk of cerebrospinal fluid leak and skills needed for manipulation in a narrow and deep surgical field with angled 30° and 45° endoscopes.


Subject(s)
Amygdala/surgery , Endoscopy/methods , Hippocampus/surgery , Pterygopalatine Fossa/surgery , Amygdala/anatomy & histology , Cadaver , Hippocampus/anatomy & histology , Humans , Magnetic Resonance Imaging , Paranasal Sinus Neoplasms/surgery , Pterygopalatine Fossa/anatomy & histology , Sphenoid Bone/surgery , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...