Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Cereb Blood Flow Metab ; 42(10): 1890-1904, 2022 10.
Article in English | MEDLINE | ID: mdl-35632989

ABSTRACT

For the first time, labeling effects after oral intake of [1-13C]glucose are observed in the human brain with pure 1H detection at 9.4 T. Spectral time series were acquired using a short-TE 1H MRS MC-semiLASER (Metabolite Cycling semi Localization by Adiabatic SElective Refocusing) sequence in two voxels of 5.4 mL in the frontal cortex and the occipital lobe. High-quality time-courses of [4-13C]glutamate, [4-13C]glutamine, [3-13C]glutamate + glutamine, [2-13C] glutamate+glutamine and [3-13C]aspartate for individual volunteers and additionally, group-averaged time-courses of labeled and non-labeled brain glucose could be obtained. Using a one-compartment model, mean metabolic rates were calculated for each voxel position: The mean rate of the TCA-cycle (Vtca) value was determined to be 1.36 and 0.93 µmol min-1 g-1, the mean rate of glutamine synthesis (Vgln) was calculated to be 0.23 and 0.45 µmol min-1 g-1, the mean exchange rate between cytosolic amino acids and mitochondrial Krebs cycle intermediates (Vx) rate was found to be 0.57 and 1.21 µmol min-1 g-1 for the occipital lobe and the frontal cortex, respectively. These values were in agreement with previously reported data. Altogether, it can be shown that this most simple technique combining oral administration of [1-13C]Glc with pure 1H MRS acquisition is suitable to measure metabolic rates.


Subject(s)
Glucose , Glutamine , Administration, Oral , Amino Acids , Aspartic Acid/metabolism , Brain/metabolism , Carbon Isotopes/metabolism , Frontal Lobe/diagnostic imaging , Frontal Lobe/metabolism , Glucose/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Humans , Magnetic Resonance Spectroscopy/methods , Occipital Lobe/diagnostic imaging , Occipital Lobe/metabolism
2.
Magn Reson Med ; 86(5): 2368-2383, 2021 11.
Article in English | MEDLINE | ID: mdl-34219281

ABSTRACT

PURPOSE: To present 31 P whole brain MRSI with a high spatial resolution to probe quantitative tissue analysis of 31 P MRSI at an ultrahigh field strength of 9.4 Tesla. METHODS: The study protocol included a 31 P MRSI measurement with an effective resolution of 2.47 mL. For SNR optimization, the nuclear Overhauser enhancement at 9.4 Tesla was investigated. A sensitivity correction was achieved by applying a low rank approximation of the γ-adenosine triphosphate signal. Group analysis and regression on individual volunteers were performed to investigate quantitative concentration differences between different tissue types. RESULTS: Differences in gray and white matter tissue 31 P concentrations could be investigated for 12 different 31 P resonances. In addition, the first highly resolved quantitative MRSI images measured at B0 = 9.4 Tesla of 31 P detectable metabolites with high SNR could be presented. CONCLUSION: With an ultrahigh field strength B0 = 9.4 Tesla, 31 P MRSI moves further toward quantitative metabolic imaging, and subtle differences in concentrations between different tissue types can be detected.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Humans , Magnetic Resonance Spectroscopy
3.
PLoS One ; 16(6): e0252935, 2021.
Article in English | MEDLINE | ID: mdl-34097707

ABSTRACT

Deuterium Magnetic Resonance Spectroscopy (DMRS) is a non-invasive technique that allows the detection of deuterated compounds in vivo. DMRS has a large potential to analyze uptake, perfusion, washout or metabolism, since deuterium is a stable isotope and therefore does not decay during biologic processing of a deuterium labelled substance. Moreover, DMRS allows the distinction between different deuterated substances. In this work, we performed DMRS of deuterated 3-O-Methylglucose (OMG). OMG is a non-metabolizable glucose analog which is transported similar to D-glucose. DMRS of OMG was performed in phantom and in vivo measurements using a preclinical 7 Tesla MRI system. The chemical shift (3.51 ± 0.1 ppm) and relaxation times were determined. OMG was injected intravenously and spectra were acquired over a period of one hour to monitor the time evolution of the deuterium signal in tumor-bearing rats. The increase and washout of OMG could be observed. Three different exponential functions were compared in terms of how well they describe the OMG washout. A mono-exponential model with offset seems to describe the observed time course best with a time constant of 1910 ± 770 s and an offset of 2.5 ± 1.2 mmol/l (mean ± std, N = 3). Chemical shift imaging could be performed with a voxel size of 7.1 mm x 7.1 mm x 7.9 mm. The feasibility of DMRS with deuterium labelled OMG could be demonstrated. These data might serve as basis for future studies that aim to characterize glucose transport using DMRS.


Subject(s)
3-O-Methylglucose/metabolism , Bone Neoplasms/secondary , Breast Neoplasms/pathology , Deuterium/chemistry , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Phantoms, Imaging , Animals , Biological Transport , Bone Neoplasms/metabolism , Breast Neoplasms/metabolism , Cell Proliferation , Feasibility Studies , Female , Rats , Rats, Mutant Strains , Rats, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Magn Reson Med ; 80(6): 2311-2325, 2018 12.
Article in English | MEDLINE | ID: mdl-29707804

ABSTRACT

PURPOSE: The aim of this study was to apply compressed sensing to accelerate the acquisition of high resolution metabolite maps of the human brain using a nonlipid suppressed ultra-short TR and TE 1 H FID MRSI sequence at 9.4T. METHODS: X-t sparse compressed sensing reconstruction was optimized for nonlipid suppressed 1 H FID MRSI data. Coil-by-coil x-t sparse reconstruction was compared with SENSE x-t sparse and low rank reconstruction. The effect of matrix size and spatial resolution on the achievable acceleration factor was studied. Finally, in vivo metabolite maps with different acceleration factors of 2, 4, 5, and 10 were acquired and compared. RESULTS: Coil-by-coil x-t sparse compressed sensing reconstruction was not able to reliably recover the nonlipid suppressed data, rather a combination of parallel and sparse reconstruction was necessary (SENSE x-t sparse). For acceleration factors of up to 5, both the low-rank and the compressed sensing methods were able to reconstruct the data comparably well (root mean squared errors [RMSEs] ≤ 10.5% for Cre). However, the reconstruction time of the low rank algorithm was drastically longer than compressed sensing. Using the optimized compressed sensing reconstruction, acceleration factors of 4 or 5 could be reached for the MRSI data with a matrix size of 64 × 64. For lower spatial resolutions, an acceleration factor of up to R∼4 was successfully achieved. CONCLUSION: By tailoring the reconstruction scheme to the nonlipid suppressed data through parameter optimization and performance evaluation, we present high resolution (97 µL voxel size) accelerated in vivo metabolite maps of the human brain acquired at 9.4T within scan times of 3 to 3.75 min.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Spectroscopy , Acceleration , Calibration , Data Compression , Fourier Analysis , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Models, Statistical , Signal-To-Noise Ratio , Software
5.
Magn Reson Med ; 80(4): 1714-1725, 2018 10.
Article in English | MEDLINE | ID: mdl-29424461

ABSTRACT

PURPOSE: A 16-channel multi-coil shimming setup was developed to mitigate severe B0 field perturbations at ultrahigh field and improve data quality for human brain imaging and spectroscopy. METHODS: The shimming setup consisted of 16 circular B0 coils that were positioned symmetrically on a cylinder with a diameter of 370 mm. The latter was large enough to house a shielded 18/32-channel RF transceiver array. The shim performance was assessed via simulations and phantom as well as in vivo measurements at 9.4 T. The global and dynamic shimming performance of the multi-coil setup was compared with the built-in scanner shim system for EPI and single voxel spectroscopy. RESULTS: The presence of the multi-coil shim did not influence the performance of the RF coil. The performance of the proposed setup was similar to a full third-order spherical harmonic shim system in the case of global static and dynamic slice-wise shimming. Dynamic slice-wise shimming with the multi-coil setup outperformed global static shimming with the scanner's second-order spherical-harmonic shim. The multi-coil setup allowed mitigating geometric distortions for EPI. The combination of the multi-coil shim setup with the zeroth and first-order shim of the scanner further reduced the standard deviation of the B0 field in the brain by 12% compared with the case in which multi-coil was used exclusively. CONCLUSION: The combination of a multi-coil setup and the linear shim channels of the scanner provides a straightforward solution for implementing dynamic slice-wise shimming without requiring an additional pre-emphasis setup.


Subject(s)
Brain/diagnostic imaging , Echo-Planar Imaging/instrumentation , Echo-Planar Imaging/methods , Image Processing, Computer-Assisted/methods , Adult , Equipment Design , Humans , Phantoms, Imaging , Signal Processing, Computer-Assisted , Young Adult
6.
Magn Reson Med ; 80(2): 442-451, 2018 08.
Article in English | MEDLINE | ID: mdl-29285781

ABSTRACT

PURPOSE: This study investigates metabolite concentrations using metabolite-cycled 1 H free induction decay (FID) magnetic resonance spectroscopic imaging (MRSI) at ultra-high fields. METHODS: A non-lipid-suppressed and slice-selective ultra-short echo time (TE) 1 H FID MRSI sequence was combined with a low-specific absorption rate (SAR) asymmetric inversion adiabatic pulse to enable non-water-suppressed metabolite mapping using metabolite-cycling at 9.4T. The results were compared to a water-suppressed FID MRSI sequence, and the same study was performed at 3T for comparison. The scan times for performing single-slice metabolite mapping with a nominal voxel size of 0.4 mL were 14 and 17.5 min on 3T and 9.4T, respectively. RESULTS: The low-SAR asymmetric inversion adiabatic pulse enabled reliable non-water-suppressed metabolite mapping using metabolite cycling at both 3T and 9.4T. The spectra and maps showed good agreement with the water-suppressed FID MRSI ones at both field strengths. A quantitative analysis of metabolite ratios with respect to N-acetyl aspartate (NAA) was performed. The difference in Cre/NAA was statistically significant, ∼0.1 higher for the non-water-suppressed case than for water suppression (from 0.73 to 0.64 at 3T and from 0.69 to 0.59 at 9.4T). The difference is likely because of chemical exchange effects of the water suppression pulses. Small differences in mI/NAA were also statistically significant, however, are they are less reliable because the metabolite peaks are close to the water peak that may be affected by the water suppression pulses or metabolite-cycling inversion pulse. CONCLUSION: We showed the first implementation of non-water-suppressed metabolite-cycled 1 H FID MRSI at ultra-high fields. An increase in Cre/NAA was seen for the metabolite-cycled case. The same methodology was further applied at 3T and similar results were observed. Magn Reson Med 80:442-451, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Aspartic Acid/analogs & derivatives , Brain/diagnostic imaging , Brain/metabolism , Humans , Phantoms, Imaging , Signal Processing, Computer-Assisted
7.
NMR Biomed ; 30(8)2017 Aug.
Article in English | MEDLINE | ID: mdl-28543787

ABSTRACT

Magnetic Resonance Spectroscopy (MRS) can provide in vivo metabolite concentrations in standard concentration units if a reliable reference signal is available. For 1 H MRS in the human brain, typically the signal from the tissue water is used as the (internal) reference signal. However, a concentration determination based on the tissue water signal most often requires a reliable estimate of the water concentration present in the investigated tissue. Especially in clinically interesting cases, this estimation might be difficult. To avoid assumptions about the water in the investigated tissue, the Electric REference To access In vivo Concentrations (ERETIC) method has been proposed. In this approach, the metabolite signal is compared with a reference signal acquired in a phantom and potential coil-loading differences are corrected using a synthetic reference signal. The aim of this study, conducted with a transceiver quadrature head coil, was to increase the accuracy of the ERETIC method by correcting the influence of spatial B1 inhomogeneities and to simplify the quantification with ERETIC by incorporating an automatic phase correction for the ERETIC signal. Transmit field ( B1+) differences are minimized with a volume-selective power optimization, whereas reception sensitivity changes are corrected using contrast-minimized images of the brain and by adapting the voxel location in the phantom measurement closely to the position measured in vivo. By applying the proposed B1 correction scheme, the mean metabolite concentrations determined with ERETIC in 21 healthy subjects at three different positions agree with concentrations derived with the tissue water signal as reference. In addition, brain water concentrations determined with ERETIC were in agreement with estimations derived using tissue segmentation and literature values for relative water densities. Based on the results, the ERETIC method presented here is a valid tool to derive in vivo metabolite concentration, with potential advantages compared with internal water referencing in diseased tissue.


Subject(s)
Brain/metabolism , Electricity , Metabolome , Adult , Female , Humans , Male , Phantoms, Imaging , Reference Standards , Water , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...