Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 11(27): 13139-13153, 2019 Jul 21.
Article in English | MEDLINE | ID: mdl-31268459

ABSTRACT

Systematic exploration of the synthesis of mixed-metal Dy-M nitride clusterfullerenes (NCFs, M = Gd, Er, Tm, Lu) is performed, and the impact of the second metal on the relative yield is evaluated. We demonstrate that the ionic radius of the metal appears to be the main factor allowing explanation of the relative yields in Dy-M mixed-metal systems with M = Sc, Lu, Er, and Gd. At the same time, Dy-Tm NCFs show anomalously low yields, which is not consistent with the relatively small ionic radius of Tm3+ but can be explained by the high third ionization potential of Tm. Complete separation of Dy-Gd and Dy-Er, as well as partial separation of Dy-Lu M3N@C80 nitride clusterfullerenes, is accomplished by recycling HPLC. The molecular structures of DyGd2N@C80 and DyEr2N@C80 are analyzed by means of single-crystal X-ray diffraction. A remarkable ordering of mixed-metal nitride clusters is found despite similar size and electronic properties of the metals. Possible pyramidalization of the nitride clusters in these and other nitride clusterfullerenes is critically analyzed with the help of DFT calculations and reconstruction of the nitrogen inversion barrier in M3N@C80 molecules is performed. Although a double-well potential with a pyramidal cluster structure is found to be common for most of them, the small size of the inversion barrier often leads to an apparent planar structure of the cluster. This situation is found for those M3N@C80 molecules in which the energy of the lowest vibrational level exceeds that of the inversion barrier, including Dy3N@C80 and DyEr2N@C80. The genuine pyramidal structure can be observed by X-ray diffraction only when the lowest vibrational level is below the inversion barrier, such as those found in Gd3N@C80 and DyGd2N@C80. The quantum nature of molecular vibrations becomes especially apparent when the size of the inversion barrier is comparable to the energy of the lowest vibrational levels.

2.
Nanoscale ; 10(24): 11287-11292, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29882575

ABSTRACT

Fullerene single molecule magnets (SMMs) DySc2N@C80 and Dy2ScN@C80 are functionalized via a 1,3-dipolar cycloaddition with surface-anchoring thioether groups. The SMM properties of Dy-fullerenes are substantially affected by the cycloaddition. Submonolayers of the physisorbed derivatives exhibit magnetic hysteresis on an Au(111) surface at 2 K as revealed by X-ray magnetic circular dichroism.

3.
Phys Chem Chem Phys ; 20(17): 11656-11672, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29671443

ABSTRACT

Relaxation of magnetization in endohedral metallofullerenes DySc2N@C80 is studied at different temperatures, in different magnetic fields, and in different molecular arrangements. Magnetization behavior and relaxation are analyzed for powder sample, and for DySc2N@C80 diluted in non-magnetic fullerene Lu3N@C80, adsorbed in voids of a metal-organic framework, and dispersed in a polymer. The magnetic field dependence and zero-field relaxation are also studied for single-crystals of DySc2N@C80 co-crystallized with Ni(ii) octaethylporphyrin, as well as for the single crystal diluted with Lu3N@C80. Landau-Zener theory is applied to analyze quantum tunneling of magnetization in the crystals. The field dependence of relaxation rates revealed a dramatic dependence of the zero-field tunneling resonance width on the dilution and is explained with the help of an analysis of dipolar field distributions. AC magnetometry is used then to get access to the relaxation of magnetization in a broader temperature range, from 2 to 87 K. Finally, a theoretical framework describing the spin dynamics with dissipation is proposed to study magnetization relaxation phenomena in single molecule magnets.

4.
Chem Commun (Camb) ; 53(56): 7901-7904, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28656179

ABSTRACT

The Dy-Sc nitride clusterfullerene Dy2ScN@C80-Ih exhibits slow relaxation of magnetization up to 76 K. Above 60 K, thermally-activated relaxation proceeds via the fifth-excited Kramers doublet with the energy of 1735 ± 21 K, which is the highest barrier ever reported for dinuclear lanthanide single molecule magnets.

SELECTION OF CITATIONS
SEARCH DETAIL
...