Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(10): e0291825, 2023.
Article in English | MEDLINE | ID: mdl-37792716

ABSTRACT

Among mammals, hippopotamids ('hippos') have been described as the species with the lowest chewing efficacy despite elaborate enamel folds on the occlusal surface or their cheek teeth, which was hypothesized to result from the lack of a grinding chewing motion. We investigated the chewing and dentition of the two extant hippo species, the common hippo (Hippopotamus amphibius) and the pygmy hippo (Choeropsis liberiensis), making (video) observations of live animals and gathering data on museum specimens (n = 86 H. amphibius and 26 C. liberiensis skulls). Hippos have a low degree of anisodonty (differences in width between maxillary and mandibular cheek teeth) and anisognathy (difference in width between the upper and the lower jaw), corresponding to a mainly orthal (up-and-down) chewing motion. The two hippo species differ slightly, but distinctively, in their anterior dental morphology and chewing mode. In both species, the canines do not completely prevent a lateral jaw movement but would, in theory, permit this movement until the mandibular canines get into contact with the maxillary protruding snout. This movement is only realized, to a small extent, in pygmy hippos, leaving distinct wear traces on their incisors and creating relatively wider wear facets on the maxillary canines. In common hippos, the interlocking upper and lower incisors prevent lateral jaw movement. Corresponding contact wear facets are evident on the medial aspect of the upper, and on the lateral aspect of the lower incisors-unless museal reconstructions mispositioned these teeth. If these facets are interpreted as an indication for a relic of a lateral jaw movement that was probably more prominent in hippo ancestors, i.e. if we assume that hippos evolved orthal chewing secondarily, several other characteristics of hippos can be explained, such as a low degree of hypsodonty (in the absence of distinct attrition due to a grinding chewing movement), a secondary loss of complexity in their enamel schmelzmuster, a secondary evolution of a wide mouth gape, a reduction in anisodonty compared to their ancestors, and the evolution of a bilaterally symmetrical ('trifoliate') enamel folding pattern on the molar occlusal surface from an ancestral bunoselenodont condition. As an underlying driving force, selection for intraspecific combat with canines and incisors, necessitating a wide gape and a rigid jaw, has been suggested.


Subject(s)
Artiodactyla , Tooth Wear , Tooth , Animals , Mastication , Dentition , Tooth/anatomy & histology , Mammals , Incisor/anatomy & histology , Maxilla
2.
J Morphol ; 284(2): e21554, 2023 02.
Article in English | MEDLINE | ID: mdl-36645378

ABSTRACT

The evolution of mammals is characterized, amongst other developments, by an increasing relevance of effective food processing in form of an increasingly durable dentition, complex occlusal surfaces, and transverse chewing movements. Some factors have received increasing attention for the facilitation of the latter, such as the configuration of the jaw joint, the chewing muscle arrangement and lever arms, or the reduction of interlocking cusps on the cheek teeth occlusal surface. By contrast, the constraining effect of the anterior dentition (incisors and canines) on transverse chewing motions, though known, has received less comprehensive attention. Here, we give examples of this constraint in extant mammals and outline a variety of morphological solutions to this constraint, including a reduction of the anterior dentition, special arrangements of canines and incisors, the nesting of the mandibular cheek teeth within the maxillary ones, and the use of different jaw positions for different dental functions (cropping vs. grinding). We suggest that hypselodont anterior canines or incisors in some taxa might represent a compensatory mechanism for self-induced wear during a grinding chewing motion. We propose that the diversity in anterior dentition among mammalian herbivores, and the evolutionary trend towards a reduction of the anterior dentition in many taxa, indicates that the constraining effect of the anterior dentition, which is rigidly linked to the cheek teeth by the osseous jaws, represents a relevant selective pressure in mammalian evolution.


Subject(s)
Mastication , Musculoskeletal System , Animals , Mastication/physiology , Mammals , Movement , Incisor/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...