Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Sci Rep ; 14(1): 10709, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729980

ABSTRACT

Three years after SARS-CoV-2 emerged as a global infectious threat, the virus has become endemic. The neurological complications such as depression, anxiety, and other CNS complications after COVID-19 disease are increasing. The brain, and CSF have been shown as viral reservoirs for SARS-CoV-2, yielding a potential hypothesis for CNS effects. Thus, we investigated the CNS pharmacology of orally dosed nirmatrelvir/ritonavir (NMR/RTV). Using both an in vitro and an in vivo rodent model, we investigated CNS penetration and potential pharmacodynamic activity of NMR. Through pharmacokinetic modeling, we estimated the median CSF penetration of NMR to be low at 18.11% of plasma with very low accumulation in rodent brain tissue. Based on the multiples of the 90% maximal effective concentration (EC90) for SARS-CoV-2, NMR concentrations in the CSF and brain do not achieve an exposure level similar to that of plasma. A median of only 16% of all the predicted CSF concentrations in rats were > 3xEC90 (unadjusted for protein binding). This may have implications for viral persistence and neurologic post-acute sequelae of COVID-19 if increased NMR penetration in the CNS leads to decreased CNS viral loads and decreased CNS inflammation.


Subject(s)
Leukocytes, Mononuclear , Ritonavir , SARS-CoV-2 , Animals , Rats , Ritonavir/pharmacokinetics , SARS-CoV-2/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Humans , Male , Brain/metabolism , Brain/virology , COVID-19 Drug Treatment , COVID-19/virology , COVID-19/cerebrospinal fluid , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Rats, Sprague-Dawley , Central Nervous System/metabolism , Central Nervous System/virology
2.
Cancer Med ; 12(23): 21075-21096, 2023 12.
Article in English | MEDLINE | ID: mdl-37997517

ABSTRACT

BACKGROUND: Pediatric brain tumors (PBT) stand as the leading cause of cancer-related deaths in children. Chemoradiation protocols have improved survival rates, even for non-resectable tumors. Nonetheless, radiation therapy carries the risk of numerous adverse effects that can have long-lasting, detrimental effects on the quality of life for survivors. The pursuit of chemotherapeutics that could obviate the need for radiotherapy remains ongoing. Several anti-tumor agents, including sunitinib, valproic acid, carboplatin, and panobinostat, have shown effectiveness in various malignancies but have not proven effective in treating PBT. The presence of the blood-brain barrier (BBB) plays a pivotal role in maintaining suboptimal concentrations of anti-cancer drugs in the central nervous system (CNS). Ongoing research aims to modulate the integrity of the BBB to attain clinically effective drug concentrations in the CNS. However, current findings on the interaction of exogenous chemical agents with the BBB remain limited and do not provide a comprehensive explanation for the ineffectiveness of established anti-cancer drugs in PBT. METHODS: We conducted our search for chemotherapeutic agents associated with the blood-brain barrier (BBB) using the following keywords: Chemotherapy in Cancer, Chemotherapy in Brain Cancer, Chemotherapy in PBT, BBB Inhibition of Drugs into CNS, Suboptimal Concentration of CNS Drugs, PBT Drugs and BBB, and Potential PBT Drugs. We reviewed each relevant article before compiling the information in our manuscript. For the generation of figures, we utilized BioRender software. FOCUS: We focused our article search on chemical agents for PBT and subsequently investigated the role of the BBB in this context. Our search criteria included clinical trials, both randomized and non-randomized studies, preclinical research, review articles, and research papers. FINDING: Our research suggests that, despite the availability of potent chemotherapeutic agents for several types of cancer, the effectiveness of these chemical agents in treating PBT has not been comprehensively explored. Additionally, there is a scarcity of studies examining the role of the BBB in the suboptimal outcomes of PBT treatment, despite the effectiveness of these drugs for other types of tumors.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Child , Humans , Blood-Brain Barrier , Quality of Life , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Antineoplastic Agents/therapeutic use
3.
Article in English | MEDLINE | ID: mdl-37429153

ABSTRACT

A highly sensitive LC-MS/MS methods were developed and validated to quantify nine antiretrovirals (atazanavir [ATV], tenofovir [TFV], emtricitabine [FTC], darunavir [DRV], dolutegravir [DTG], efavirenz [EFV], lamivudine [3TC], raltegravir [RAL], and ritonavir [RTV]) in human cerebral spinal fluid (CSF). The approach remedies adsorption issues caused by polypropylene based sample collection tubes. 1% ammonium hydroxide in methanol was added in an amount equal to the volume of each quality control (QC) or patient sample. Protein precipitation was utilized with a CSF sample volume of 100 µL and a 100 µL of methanol:ACN and vortexed. Chromatographic separation was achieved with a 3 × 100 ACE® C18 column for ATV, DRV, DTG, EFV, RTV and RAL, and a 2 × 100 Polar RP column for TFV/FTC/3TC. Mobile phase was methanol:water:formic acid (70:30:0.1, v/v/v) for ATV, DRV, DTG, EFV and RTV (10 uL injection, flow rate: 1.00 mL/min), ACN:water:formic acid (35:65:0.1, v/v/v) for RAL (50 uL injection, flow rate: 1.00 mL/min), ACN:water:formic acid (2:98:0.1, v/v/v) for TFV, FTC and 3TC (50 uL injection, flow rate: 0.35 mL/min). Column temperature was 40° C across all assays. The mass spectrometer was operated in positive, multiple-reaction-monitoring (MRM) mode with electrospray ionization (ESI) for all analytes with the exception of EFV, which was operated in negative, MRM mode with ESI. The assay was linear over the calibration range of 1 to 250 ng/mL for all analytes. The addition of 1% ammonium hydroxide in sample tubes overcame up to 44% negative bias in QC samples and allowed the methods to meet full validation criteria.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Anti-HIV Agents/therapeutic use , Chromatography, Liquid/methods , Methanol , Adsorption , Ammonium Hydroxide , Tandem Mass Spectrometry/methods , Anti-Retroviral Agents/analysis , Tenofovir/therapeutic use , Lamivudine/therapeutic use , Emtricitabine/therapeutic use , Benzoxazines/analysis , Ritonavir/therapeutic use , HIV Infections/drug therapy , Water
4.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239978

ABSTRACT

Angiotensin Converting Enzyme 2 (ACE-2), Transmembrane Serine Protease 2 (TMPRSS-2) and Neuropilin-1 cellular receptors support the entry of SARS-CoV-2 into susceptible human target cells and are characterized at the molecular level. Some evidence on the expression of entry receptors at mRNA and protein levels in brain cells is available, but co-expression of these receptors and confirmatory evidence on brain cells is lacking. SARS-CoV-2 infects some brain cell types, but infection susceptibility, multiple entry receptor density, and infection kinetics are rarely reported in specific brain cell types. Highly sensitive Taqman ddPCR, flow-cytometry and immunocytochemistry assays were used to quantitate the expression of ACE-2, TMPRSS-2 and Neuropilin-1 at mRNA and protein levels on human brain-extracted pericytes and astrocytes, which are an integral part of the Blood-Brain-Barrier (BBB). Astrocytes showed moderate ACE-2 (15.9 ± 1.3%, Mean ± SD, n = 2) and TMPRSS-2 (17.6%) positive cells, and in contrast show high Neuropilin-1 (56.4 ± 39.8%, n = 4) protein expression. Whereas pericytes showed variable ACE-2 (23.1 ± 20.7%, n = 2), Neuropilin-1 (30.3 ± 7.5%, n = 4) protein expression and higher TMPRSS-2 mRNA (667.2 ± 232.3, n = 3) expression. Co-expression of multiple entry receptors on astrocytes and pericytes allows entry of SARS-CoV-2 and progression of infection. Astrocytes showed roughly four-fold more virus in culture supernatants than pericytes. SARS-CoV-2 cellular entry receptor expression and "in vitro" viral kinetics in astrocytes and pericytes may improve our understanding of viral infection "in vivo". In addition, this study may facilitate the development of novel strategies to counter the effects of SARS-CoV-2 and inhibit viral infection in brain tissues to prevent the spread and interference in neuronal functions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Neuropilin-1/genetics , Angiotensin-Converting Enzyme 2/genetics , Astrocytes , Pericytes , Kinetics , Blood-Brain Barrier , Serine Endopeptidases/genetics
5.
J Neurosci Methods ; 392: 109867, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37116621

ABSTRACT

The blood-brain barrier (BBB) is a protective cellular anatomical layer with a dynamic micro-environment, tightly regulating the transport of materials across it. To achieve in-vivo characteristics, an in-vitro BBB model requires the constituent cell types to be layered in an appropriate order. A cost-effective in-vitro BBB model is desired to facilitate central nervous system (CNS) drug penetration studies. Enhanced integrity of tight junctions observed during the in-vitro BBB establishment and post-experiment is essential in these models. We successfully developed an in-vitro BBB model mimicking the in-vivo cell composition and a distinct order of seeding primary human brain cells. Unlike other in-vitro BBB models, our work avoids the need for pre-coated plates for cell adhesion and provides better cell visualization during the procedure. We found that using bovine collagen-I coating, followed by bovine fibronectin coating and poly-L-lysine coating, yields better adhesion and layering of cells on the transwell membrane compared to earlier reported use of collagen and poly-L-lysine only. Our results indicated better cell visibility and imaging with the polyester transwell membrane as well as point to a higher and more stable Trans Endothelial Electrical Resistance values in this plate. In addition, we found that the addition of zinc induced higher claudin 5 expressions in neuronal cells. Dolutegravir, a drug used in the treatment of HIV, is known to appear in moderate concentrations in the CNS. Thus, dolutegravir was used to assess the functionality of the final model and cells. Using primary cells and an in-house coating strategy substantially reduces costs and provides superior imaging of cells and their tight junction protein expression. Our 4-cell-based BBB model is a suitable experimental model for the drug screening process.


Subject(s)
Blood-Brain Barrier , Polylysine , Animals , Cattle , Humans , Blood-Brain Barrier/physiology , Cell Line , Polylysine/metabolism , Polylysine/pharmacology , Endothelial Cells , Microscopy, Confocal
6.
Nat Commun ; 13(1): 3226, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680875

ABSTRACT

Ultra-long-acting integrase strand transfer inhibitors were created by screening a library of monomeric and dimeric dolutegravir (DTG) prodrug nanoformulations. This led to an 18-carbon chain modified ester prodrug nanocrystal (coined NM2DTG) with the potential to sustain yearly dosing. Here, we show that the physiochemical and pharmacokinetic (PK) formulation properties facilitate slow drug release from tissue macrophage depot stores at the muscle injection site and adjacent lymphoid tissues following single parenteral injection. Significant plasma drug levels are recorded up to a year following injection. Tissue sites for prodrug hydrolysis are dependent on nanocrystal dissolution and prodrug release, drug-depot volume, perfusion, and cell-tissue pH. Each affect an extended NM2DTG apparent half-life recorded by PK parameters. The NM2DTG product can impact therapeutic adherence, tolerability, and access of a widely used integrase inhibitor in both resource limited and rich settings to reduce HIV-1 transmission and achieve optimal treatment outcomes.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , Prodrugs , HIV Infections/drug therapy , Heterocyclic Compounds, 3-Ring , Humans , Oxazines/therapeutic use , Piperazines , Prodrugs/pharmacology , Pyridones/therapeutic use
7.
Antimicrob Agents Chemother ; 66(5): e0005622, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35446134

ABSTRACT

Vancomycin usage is often unavoidable in pregnant patients; however, literature suggests vancomycin can cross the placental barrier and reach the fetus. Understanding the mass transit of vancomycin to the fetus is important in pregnancy. We aimed to (i) identify a relevant population pharmacokinetic (PK) model for vancomycin in pregnancy and (ii) estimate PK parameters and describe the mass transit of vancomycin from mother to pup kidneys. Pregnant Sprague-Dawley rats (i.e., trimester 1 and trimester 3) received 250 mg/kg vancomycin once daily for three days through intravenous injection via an internal jugular vein catheter. Vancomycin concentrations in maternal plasma and pup kidneys were quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS). Multiple compartment models were fitted and assessed using a nonparametric approach with Pmetrics. A total of 10 vancomycin-treated rats and 48 pups contributed PK data. A 3-compartment model adjusted for trimester fit the data well (maternal plasma Bayesian, observed versus predicted R2 = 0.978; pup kidney Bayesian, observed versus predicted R2 = 0.999). The mean rate constant for vancomycin mass transit to the pup kidney was 0.72 h-1 for trimester 1 dams and 0.75 h-1 for trimester 3 dams. Median vancomycin concentrations in pup kidneys from trimester 3 were significantly higher than those in trimester 1 (8.62 versus 0.36 µg/mL, P < 0.001). Vancomycin transited to the fetus from the mother and was; kidney accumulation differed by trimester. This model may be useful for a translational understanding of vancomycin distribution in pregnancy to ensure efficacious and safe doses to both mother and fetus.


Subject(s)
Tandem Mass Spectrometry , Vancomycin , Animals , Bayes Theorem , Chromatography, Liquid , Female , Humans , Placenta , Pregnancy , Rats , Rats, Sprague-Dawley , Vancomycin/pharmacokinetics
8.
Antimicrob Agents Chemother ; 65(10): e0106021, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34339278

ABSTRACT

Vancomycin area under the concentration curve (AUC) is known to predict vancomycin-induced acute kidney injury (AKI). Data were analyzed from a rat model (n = 48) and two prospective clinical studies (PROVIDE [n = 263] and CAMERA2 [n = 291]). A logit-link model was used to calculate the multiplicative factors between the probability of AKI from clinical studies and in the rat. The rat was 2.7 to 4.2 times more sensitive to AKI between AUCs of 199.5 and 794.3 mg·h/liter, respectively.


Subject(s)
Acute Kidney Injury , Vancomycin , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Animals , Anti-Bacterial Agents/adverse effects , Area Under Curve , Prospective Studies , Rats , Vancomycin/adverse effects
9.
Biomed Pharmacother ; 141: 111794, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34153851

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) is the causative agent of Corona Virus Disease 2019 (COVID-19). Lower production of type I and III interferons and higher levels of inflammatory mediators upon SARS-CoV2 infection contribute to COVID-19 pathogenesis. Optimal interferon production and controlled inflammation are essential to limit COVID-19 pathogenesis. However, the aggravated inflammatory response observed in COVID-19 patients causes severe damage to the host and frequently advances to acute respiratory distress syndrome (ARDS). Toll-like receptor 7 and 8 (TLR7/8) signaling pathways play a central role in regulating induction of interferons (IFNs) and inflammatory mediators in dendritic cells. Controlled inflammation is possible through regulation of TLR mediated response without influencing interferon production to reduce COVID-19 pathogenesis. This review focuses on inflammatory mediators that contribute to pathogenic effects and the role of TLR pathways in the induction of interferon and inflammatory mediators and their contribution to COVID-19 pathogenesis. We conclude that potential TLR7/8 agonists inducing antiviral interferon response and controlling inflammation are important therapeutic options to effectively eliminate SARS-CoV2 induced pathogenesis. Ongoing and future studies may provide additional evidence on their safety and efficacy to treat COVID-19 pathogenesis.


Subject(s)
COVID-19/metabolism , Inflammation Mediators/metabolism , Interferons/metabolism , Signal Transduction/physiology , Toll-Like Receptor 7/physiology , Toll-Like Receptor 8/physiology , Anti-Inflammatory Agents/administration & dosage , COVID-19/immunology , COVID-19/therapy , Humans , Inflammation Mediators/immunology , Interferons/immunology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists
11.
Pharmaceutics ; 13(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924314

ABSTRACT

While the antiarrhythmic drug amiodarone is commonly used in clinical practice, it has a narrow therapeutic index that can lead to acute overdose. One proposed method to deal with this toxicity is lipid emulsion therapy, which may potentially quench the free amiodarone in blood and prevent its further distribution to target organs and tissues. In this study, we utilize an established swine model to examine the effects of Intralipid™ (IL) administration for acute amiodarone toxicity. A total of 14 pigs received an overdose of intravenous amiodarone. After twenty minutes, half of the pigs (n = 7) received IL while the control group (n = 7) received normal saline. Serum concentrations of amiodarone were then analyzed using a validated high-performance liquid chromatography (HPLC) method. Noncompartmental pharmacokinetic analyses were performed on the observed concentrations. There were no statistical differences in the area under the concentration time curve (6 h) or clearance, but there was a difference in the half-life between the two groups (3.12 vs. 0.85 h, p = 0.01). The administration of IL did not statistically change the overall exposure of amiodarone in the blood in the first 6 h; however, trends toward prolonged blood retention in the IL group were seen.

13.
Expert Rev Anti Infect Ther ; 19(9): 1107-1116, 2021 09.
Article in English | MEDLINE | ID: mdl-33554692

ABSTRACT

Introduction: Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), remains a significant pathogen in children. Despite evidence of decreasing prevalence, MRSA bacteremia has been closely associated with complications, including certain infections (i.e. musculoskeletal and endovascular) linked to increased treatment failures.Areas covered: This expert review summarized recent published literature on the role of treatment, dosing and administration of antibiotics used to combat serious S. aureus infections in children. The pertinent antibiotics presented were vancomycin, oxazolidinones, semi-synthetic glycopeptides, daptomycin, tigecycline, novel cephalosporins, fosfomycin and lefamulin. Vancomycin has been the most commonly used antibiotic in empiric therapy for serious MRSA infection, with new key recommendations emphasizing a different approach to dosing and therapeutic monitoring. For other antibiotics, data remain limited or clinical trials are underway.Expert opinion: MRSA remains a significant pathogen in the pediatric population. As numerous therapeutic agents are available, many agents have limited data on usage in pediatric patients. Future studies require pharmacokinetic, safety and efficacy studies in pediatric patients to ensure appropriate therapeutic treatment and outcomes. Phage therapy has been used to treat deep-seated MRSA infections and is an emerging investigational treatment option.


Subject(s)
Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/adverse effects , Bacteremia/drug therapy , Bacteremia/microbiology , Child , Dose-Response Relationship, Drug , Drug Monitoring , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Phage Therapy/methods , Staphylococcal Infections/microbiology , Staphylococcus aureus/isolation & purification
14.
Article in English | MEDLINE | ID: mdl-33526481

ABSTRACT

Augmented renal clearance (ARC) can occur in critically ill pediatric patients receiving aminoglycosides such as gentamicin and tobramycin, yet optimal dosing strategies for ARC are undefined. We evaluated the probability of achieving efficacious or toxic exposures in pediatrics. Parallel population modeling of concentration strategies were pursued using Pmetrics v1.5.2 (nonparametric) and Monolix v2019R2 (parametric). Bayesian exposures were used to classify ARC based on total clearance (CL). The effects of serum creatinine (SCR), creatinine clearance (CRCL), total body weight (TBW), postnatal age (PNA), and ARC were explored as covariates. The probabilities of target attainment (PTA) (i.e., maximum concentration [Cmax]/MIC, area under the concentration-time curve [AUC]/MIC) and of toxic exposure (PTE) (i.e., minimum concentration [Cmin] > 2 µg/ml) were calculated according to PNA and ARC. A total of 123 patients (1 to 21 years old, 56% female) contributed 304 concentrations. A two-compartment model was superior to a one-compartment model in both approaches. Bayesian posterior predicted concentrations from the nonparametric base model fit the data well (R2 = 0.96) and classified 34 patients as having ARC (28%). Both the nonparametric and parametric approaches resulted in allometrically scaling of TBW on volume (V) and clearance (CL). ARC modified CL and central V. CRCL and a maturation function modified CL. ARC was associated with a 1.49- versus 1.66-fold increase in CL and a 1.56- versus 1.66-fold increase in the central V (nonparametric versus parametric). A high dose of 12 mg/kg of body weight/day was required to achieve adequate PTA when MICs were 1 to 2 µg/ml; ARC lowered achievable MICs. When PNA was <2 years, PTE was increased. Aminoglycoside monotherapy should be avoided in critically ill pediatric patients with ARC when MICs exceed 1 µg/ml, as optimal exposures are unachievable with standard dosing.


Subject(s)
Aminoglycosides , Pediatrics , Adolescent , Adult , Anti-Bacterial Agents/therapeutic use , Bayes Theorem , Child , Child, Preschool , Critical Illness , Female , Humans , Infant , Male , Young Adult
15.
Article in English | MEDLINE | ID: mdl-33318004

ABSTRACT

Vancomycin induces exposure-related acute kidney injury. However, the pharmacokinetic-toxicodynamic (PK-TD) relationship remains unclear. Sprague-Dawley rats received intravenous (i.v.) vancomycin doses of 300 mg/kg/day and 400 mg/kg/day, divided into once-, twice-, three-times-, or four-times-daily doses (i.e., QD, BID, TID, or QID) over 24 h. Up to 8 samples plus a terminal sample were drawn during the 24-h dosing period. Twenty-four-hour urine was collected and assayed for kidney injury molecule-1 (KIM-1). Vancomycin was quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS). Following terminal sampling, nephrectomy and histopathologic analyses were conducted. PK analyses were conducted using Pmetrics. PK exposures (i.e., area under the concentration-time curve from 0 to 24 h [AUC0-24] and maximum concentration from 0 to 24 h [Cmax0-24]) were calculated for each rat, and PK-TD relationships were discerned. A total of 53-rats generated PK-TD data. A 2-compartment model fit the data well (Bayesian observed versus predicted concentrations; R2 = 0.96). KIM-1 values were greater in QD and BID groups (P for QD versus TID, <0.002; P for QD versus QID, <0.004; P for BID versus TID, <0.002; and P for BID versus QID, <0.004). Exposure-response relationships were observed between KIM-1 versus Cmax0-24 and AUC0-24 (R2 = 0.7 and 0.68). Corrected Akaike's information criterion showed Cmax0-24 as the most predictive PK-TD driver for vancomycin-induced kidney injury (VIKI) (-5.28 versus -1.95). While PK-TD indices are often intercorrelated, maximal concentrations and fewer doses (for the same total daily amount) resulted in increased VIKI in our rat model.


Subject(s)
Tandem Mass Spectrometry , Vancomycin , Animals , Area Under Curve , Bayes Theorem , Chromatography, Liquid , Kidney , Rats , Rats, Sprague-Dawley , Vancomycin/adverse effects
17.
Curr Opin Pharmacol ; 54: 102-108, 2020 10.
Article in English | MEDLINE | ID: mdl-33049585

ABSTRACT

Antiretroviral therapy in people living with HIV can achieve potent, long-term suppression of HIV plasma viremia and has increased life expectancy. The central nervous system is infected early after virus acquisition and remains a reservoir for HIV. HIV-associated neurocognitive disorders (HAND) are an end-organ manifestation of HIV infection. The need to address neurological complications caused by HAND is significant as approximately 50% of people living with HIV on suppressive antiretroviral therapy are estimated to have some form of HAND. This review discusses the pathophysiology of HAND, CSF/CNS penetration and clinical pharmacology of antiretrovirals including pharmacokinetic/pharmacodynamic relationships, the persistence of HIV in the brain, and future therapeutic approaches to preserve and improve sustained viral suppression in the brain.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , Neurocognitive Disorders/drug therapy , Animals , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/pharmacology , Brain/metabolism , HIV Infections/complications , HIV Infections/metabolism , Humans , Neurocognitive Disorders/etiology , Neurocognitive Disorders/metabolism
18.
Drugs ; 80(16): 1649-1676, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32860583

ABSTRACT

The newest class of antiretrovirals for all persons living with HIV are the integrase strand transfer inhibitors (INSTIs). Since 2007, five INSTIs have been introduced: raltegravir, elvitegravir, dolutegravir, bictegravir, and cabotegravir. The INSTIs have favorable pharmacokinetic and pharmacodynamic properties, which contribute to both their effectiveness and their ease of use. With the exception of cabotegravir, each INSTI is US Food and Drug Administration approved for treatment-naïve individuals initiating antiretroviral therapy. All of the INSTIs, except raltegravir, are approved for antiretroviral treatment simplification for virologically suppressed patients without INSTI resistance. Data also support the use of dolutegravir and raltegravir in individuals with antiretroviral resistance as part of an optimized antiretroviral regimen. INSTIs are generally well tolerated by people living with HIV compared with older classes of antiretrovirals, but emerging data suggest that some INSTIs contribute to weight gain. Due to their efficacy, safety, and ease of use, HIV treatment guidelines recommend oral INSTIs as preferred components of antiretroviral therapy for individuals initiating therapy. The newest INSTI, cabotegravir, represents an alternative to oral administration of life-long antiretroviral therapy with the availability of a long-acting injectable formulation. This review summarizes the current use of INSTIs in adults living with HIV, highlighting the similarities and differences within the class related to pharmacodynamics, pharmacokinetics, safety, dosing, and administration that contribute to their role in modern antiretroviral therapy.


Subject(s)
HIV Infections/drug therapy , HIV Integrase Inhibitors/administration & dosage , HIV-1/isolation & purification , Weight Gain/drug effects , Administration, Oral , Clinical Trials as Topic , Drug Administration Schedule , Drug Interactions , Drug Resistance, Viral , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , HIV Infections/blood , HIV Infections/diagnosis , HIV Infections/virology , HIV Integrase Inhibitors/adverse effects , HIV Integrase Inhibitors/pharmacokinetics , HIV-1/drug effects , HIV-1/enzymology , HIV-1/genetics , Humans , Injections, Intramuscular , RNA, Viral/blood , RNA, Viral/isolation & purification , Treatment Outcome , Viral Load
19.
J Pediatr Pharmacol Ther ; 25(5): 413-422, 2020.
Article in English | MEDLINE | ID: mdl-32641911

ABSTRACT

OBJECTIVES: The objectives of this study were to 1) define extent and potential clinical impact of increased or decreased renal elimination of meropenem in children with sepsis, based on analysis of renal function during the first 2 days of PICU stay; and 2) estimate the risk of subtherapeutic meropenem exposure attributable to increased renal clearance. METHODS: This retrospective study evaluated patients with a diagnosis of sepsis, receiving meropenem from the PICU at Rady Children's Hospital San Diego from 2015-2017. Meropenem exposure was estimated by using FDA-approved doses (20 and 40 mg/kg/dose) on day 1 and day 2 of PICU stay, based on a population pharmacokinetic (PK) model. For this population with sepsis, we assessed time-above-minimum inhibitory concentration (T>MIC) for pathogen MICs. RESULTS: Meropenem treatment was documented in 105 episodes of sepsis with a 48% rate of pathogen detection. By day 2, increased eGFR (>120 mL/min/1.73 m2) was documented in 49% of patients, with 17% meeting criteria for augmented renal clearance ([ARC] >160 mL/min/1.73 m2) and 10%, for decreased function. Simulations documented that 80% of PICU patients with ARC did not achieve therapeutic meropenem exposure for Pseudomonas aeruginosa with a MIC of 2, using standard doses to achieve a pharmacodynamic goal of 80% T>MIC. CONCLUSIONS: Approximately 3 of every 20 children with sepsis exhibited ARC during the first 48 hours of PICU stay. Simulations documented an increased risk for subtherapeutic meropenem exposure, suggesting that higher meropenem doses may be required to achieve adequate antibiotic exposure early in the PICU course.

20.
Clin Pharmacokinet ; 59(12): 1575-1587, 2020 12.
Article in English | MEDLINE | ID: mdl-32468446

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a form of cardiopulmonary life support frequently utilized in catastrophic lung and or cardiac failure. Patients on ECMO often receive vancomycin therapy for treatment or prophylaxis against Gram-positive organisms. It is unclear if ECMO affects vancomycin pharmacokinetics, thus we modeled the pharmacokinetic behavior of vancomycin according to ECMO-specific variables. METHODS: Adult patients receiving vancomycin and Veno-Arterial-ECMO between 12/1/2016 and 10/1/2017 were prospectively enrolled. Extracorporeal membrane oxygenation settings and four sets of pre- and post-oxygenator vancomycin concentrations were collected for each patient. Compartmental models were built and assessed ECMO flow rates on vancomycin clearance and potential circuit sequestration. Bayesian posterior concentrations of the pre- and post-oxygenator concentrations were obtained for each patient, and summary pharmacokinetic parameters were calculated. Simulations were performed from the final model for efficacy and toxicity predictions. RESULTS: Eight patients contributed 64 serum concentrations. Patients were a median (interquartile range) age of 58.5 years (50.8-62.3) with a calculated creatinine clearance of 39 mL/min (29.5-62.5) and ECMO flow rates of 3980 mL/min (interquartile range = 3493.75-4132.5). A three-compartment model best fit the data (Bayesian: plasma pre-oxygenation R2 = 0.99, post-oxygenation R2 = 0.99). Vancomycin clearance was not impacted by ECMO flow rate (p = 0.7). Simulations demonstrated that vancomycin 1 g twice daily was rarely sufficient for minimum inhibitory concentrations > 0.5 mg/L. Doses ≥ 1.5 g twice daily often exceeded toxicity thresholds for exposure. CONCLUSIONS: Extracorporeal membrane oxygenation flow rates did not influence vancomycin clearance between flow rates of 3500 and 5000 mL/min and vancomycin was not sequestered in ECMO. Common vancomycin regimens resulted in suboptimal efficacy and/or excessive toxicity. Individual therapeutic drug monitoring is recommended for patients on ECMO.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Extracorporeal Membrane Oxygenation , Vancomycin , Anti-Bacterial Agents/therapeutic use , Bayes Theorem , Female , Humans , Male , Middle Aged , Oxygenators , Vancomycin/pharmacokinetics , Vancomycin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...