Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
mBio ; 15(2): e0189823, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38259065

ABSTRACT

Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, ß-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced ß-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced ß-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger ß-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences ß-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (ß-1,3-glucan) at its cell surface. Most of the ß-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some ß-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases ß-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to ß-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in ß-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates ß-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.


Subject(s)
Candida albicans , Glucans , beta-Glucans , Humans , Candida albicans/metabolism , Glucans/metabolism , Carbon Dioxide/metabolism , Pathogen-Associated Molecular Pattern Molecules , Hypoxia/metabolism , Lactates/metabolism , Cell Wall/metabolism
2.
PLoS Pathog ; 19(7): e1011505, 2023 07.
Article in English | MEDLINE | ID: mdl-37428810

ABSTRACT

Most microbes have developed responses that protect them against stresses relevant to their niches. Some that inhabit reasonably predictable environments have evolved anticipatory responses that protect against impending stresses that are likely to be encountered in their niches-termed "adaptive prediction". Unlike yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis and Yarrowia lipolytica and other pathogenic Candida species we examined, the major fungal pathogen of humans, Candida albicans, activates an oxidative stress response following exposure to physiological glucose levels before an oxidative stress is even encountered. Why? Using competition assays with isogenic barcoded strains, we show that "glucose-enhanced oxidative stress resistance" phenotype enhances the fitness of C. albicans during neutrophil attack and during systemic infection in mice. This anticipatory response is dependent on glucose signalling rather than glucose metabolism. Our analysis of C. albicans signalling mutants reveals that the phenotype is not dependent on the sugar receptor repressor pathway, but is modulated by the glucose repression pathway and down-regulated by the cyclic AMP-protein kinase A pathway. Changes in catalase or glutathione levels do not correlate with the phenotype, but resistance to hydrogen peroxide is dependent on glucose-enhanced trehalose accumulation. The data suggest that the evolution of this anticipatory response has involved the recruitment of conserved signalling pathways and downstream cellular responses, and that this phenotype protects C. albicans from innate immune killing, thereby promoting the fitness of C. albicans in host niches.


Subject(s)
Candida albicans , Glucose , Humans , Animals , Mice , Glucose/metabolism , Oxidative Stress/physiology , Neutrophils , Saccharomyces cerevisiae/metabolism , Fungal Proteins/metabolism
3.
Cell Surf ; 8: 100084, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36299406

ABSTRACT

The immunogenicity of Candida albicans cells is influenced by changes in the exposure of microbe-associated molecular patterns (MAMPs) on the fungal cell surface. Previously, the degree of exposure on the C. albicans cell surface of the immunoinflammatory MAMP ß-(1,3)-glucan was shown to correlate inversely with colonisation levels in the gastrointestinal (GI) tract. This is important because life-threatening systemic candidiasis in critically ill patients often arises from translocation of C. albicans strains present in the patient's GI tract. Therefore, using a murine model, we have examined the impact of gut-related factors upon ß-glucan exposure and colonisation levels in the GI tract. The degree of ß-glucan exposure was examined by imaging flow cytometry of C. albicans cells taken directly from GI compartments, and compared with colonisation levels. Fungal ß-glucan exposure was lower in the cecum than the small intestine, and fungal burdens were correspondingly higher in the cecum. This inverse correlation did not hold for the large intestine. The gut fermentation acid, lactate, triggers ß-glucan masking in vitro, leading to attenuated anti-Candida immune responses. Additional fermentation acids are present in the GI tract, including acetate, propionate, and butyrate. We show that these acids also influence ß-glucan exposure on C. albicans cells in vitro and, like lactate, they influence ß-glucan exposure via Gpr1/Gpa2-mediated signalling. Significantly, C. albicans gpr1Δ gpa2Δ cells displayed elevated ß-glucan exposure in the large intestine and a corresponding decrease in fungal burden, consistent with the idea that Gpr1/Gpa2-mediated ß-glucan masking influences colonisation of this GI compartment. Finally, extracts from the murine gut and culture supernatants from the mannan grazing gut anaerobe Bacteroides thetaiotaomicron promote ß-glucan exposure at the C. albicans cell surface. Therefore, the local microbiota influences ß-glucan exposure levels directly (via mannan grazing) and indirectly (via fermentation acids), whilst ß-glucan masking appears to promote C. albicans colonisation of the murine large intestine.

4.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876755

ABSTRACT

Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, ß2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.


Subject(s)
Candida albicans/pathogenicity , Hyphae/cytology , Macrophages/metabolism , Phagocytosis , AMP-Activated Protein Kinase Kinases , Actomyosin/metabolism , Animals , CD18 Antigens/metabolism , Cell Adhesion Molecules/metabolism , Cells, Cultured , Humans , Hyphae/pathogenicity , Lectins, C-Type/metabolism , Macrophages/microbiology , Mice , Protein Kinases/metabolism , RAW 264.7 Cells
5.
Curr Top Microbiol Immunol ; 425: 297-330, 2020.
Article in English | MEDLINE | ID: mdl-31781866

ABSTRACT

The fungal cell wall is an essential organelle that maintains cellular morphology and protects the fungus from environmental insults. For fungal pathogens such as Candida albicans, it provides a degree of protection against attack by host immune defences. However, the cell wall also presents key epitopes that trigger host immunity and attractive targets for antifungal drugs. Rather than being a rigid shield, it has become clear that the fungal cell wall is an elastic organelle that permits rapid changes in cell volume and the transit of large liposomal particles such as extracellular vesicles. The fungal cell wall is also flexible in that it adapts to local environmental inputs, thereby enhancing the fitness of the fungus in these microenvironments. Recent evidence indicates that this cell wall adaptation affects host-fungus interactions by altering the exposure of major cell wall epitopes that are recognised by innate immune cells. Therefore, we discuss the impact of environmental adaptation upon fungal cell wall structure, and how this affects immune recognition, focussing on C. albicans and drawing parallels with other fungal pathogens.


Subject(s)
Candida albicans/cytology , Candida albicans/immunology , Cell Wall/immunology , Candida albicans/pathogenicity , Candidiasis/immunology , Candidiasis/microbiology , Humans
6.
Nat Commun ; 10(1): 5315, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31757950

ABSTRACT

To colonise their host, pathogens must counter local environmental and immunological challenges. Here, we reveal that the fungal pathogen Candida albicans exploits diverse host-associated signals to promote immune evasion by masking of a major pathogen-associated molecular pattern (PAMP), ß-glucan. Certain nutrients, stresses and antifungal drugs trigger ß-glucan masking, whereas other inputs, such as nitrogen sources and quorum sensing molecules, exert limited effects on this PAMP. In particular, iron limitation triggers substantial changes in the cell wall that reduce ß-glucan exposure. This correlates with reduced phagocytosis by macrophages and attenuated cytokine responses by peripheral blood mononuclear cells. Iron limitation-induced ß-glucan masking depends on parallel signalling via the iron transceptor Ftr1 and the iron-responsive transcription factor Sef1, and the protein kinase A pathway. Our data reveal that C. albicans exploits a diverse range of specific host signals to trigger protective anticipatory responses against impending phagocytic attack and promote host colonisation.


Subject(s)
Candida albicans/metabolism , Cytokines/immunology , Immune Evasion/physiology , Iron/metabolism , Macrophages/immunology , Phagocytosis/immunology , beta-Glucans/metabolism , Animals , Candida albicans/immunology , Cell Wall/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Fungal Proteins/metabolism , Humans , Immune Evasion/immunology , Immunity, Innate/immunology , Leukocytes, Mononuclear/immunology , Membrane Transport Proteins/metabolism , Mice , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Signal Transduction , beta-Glucans/immunology
7.
mBio ; 9(6)2018 11 06.
Article in English | MEDLINE | ID: mdl-30401773

ABSTRACT

Organisms must adapt to changes in oxygen tension if they are to exploit the energetic benefits of reducing oxygen while minimizing the potentially damaging effects of oxidation. Consequently, organisms in all eukaryotic kingdoms display robust adaptation to hypoxia (low oxygen levels). This is particularly important for fungal pathogens that colonize hypoxic niches in the host. We show that adaptation to hypoxia in the major fungal pathogen of humans Candida albicans includes changes in cell wall structure and reduced exposure, at the cell surface, of ß-glucan, a key pathogen-associated molecular pattern (PAMP). This leads to reduced phagocytosis by murine bone marrow-derived macrophages and decreased production of IL-10, RANTES, and TNF-α by peripheral blood mononuclear cells, suggesting that hypoxia-induced ß-glucan masking has a significant effect upon C. albicans-host interactions. We show that hypoxia-induced ß-glucan masking is dependent upon both mitochondrial and cAMP-protein kinase A (PKA) signaling. The decrease in ß-glucan exposure is blocked by mutations that affect mitochondrial functionality (goa1Δ and upc2Δ) or that decrease production of hydrogen peroxide in the inner membrane space (sod1Δ). Furthermore, ß-glucan masking is enhanced by mutations that elevate mitochondrial reactive oxygen species (aox1Δ). The ß-glucan masking defects displayed by goa1Δ and upc2Δ cells are suppressed by exogenous dibutyryl-cAMP. Also, mutations that inactivate cAMP synthesis (cyr1Δ) or PKA (tpk1Δ tpk2Δ) block the masking phenotype. Our data suggest that C. albicans responds to hypoxic niches by inducing ß-glucan masking via a mitochondrial cAMP-PKA signaling pathway, thereby modulating local immune responses and promoting fungal colonization.IMPORTANCE Animal, plant, and fungal cells occupy environments that impose changes in oxygen tension. Consequently, many species have evolved mechanisms that permit robust adaptation to these changes. The fungal pathogen Candida albicans can colonize hypoxic (low oxygen) niches in its human host, such as the lower gastrointestinal tract and inflamed tissues, but to colonize its host, the fungus must also evade local immune defenses. We reveal, for the first time, a defined link between hypoxic adaptation and immune evasion in C. albicans As this pathogen adapts to hypoxia, it undergoes changes in cell wall structure that include masking of ß-glucan at its cell surface, and it becomes better able to evade phagocytosis by innate immune cells. We also define the signaling mechanisms that mediate hypoxia-induced ß-glucan masking, showing that they are dependent on mitochondrial signaling and the cAMP-protein kinase pathway. Therefore, hypoxia appears to trigger immune evasion in this fungal pathogen.


Subject(s)
Candida albicans/immunology , Cyclic AMP-Dependent Protein Kinases/metabolism , Hypoxia/immunology , Immune Evasion , Mitochondria/metabolism , beta-Glucans/metabolism , Animals , Candida albicans/pathogenicity , Cell Wall/metabolism , Chemokine CCL5/immunology , Host-Pathogen Interactions/immunology , Humans , Interleukin-10/immunology , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Phagocytosis , Signal Transduction/immunology
8.
Mol Microbiol ; 105(4): 620-636, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28574606

ABSTRACT

The pathogenicity of the clinically important yeast, Candida albicans, is dependent on robust responses to host-imposed stresses. These stress responses have generally been dissected in vitro at 30°C on artificial growth media that do not mimic host niches. Yet host inputs, such as changes in carbon source or temperature, are known to affect C. albicans stress adaptation. Therefore, we performed screens to identify novel regulators that promote stress resistance during growth on a physiologically relevant carboxylic acid and at elevated temperatures. These screens revealed that, under these 'non-standard' growth conditions, numerous uncharacterised regulators are required for stress resistance in addition to the classical Hog1, Cap1 and Cta4 stress pathways. In particular, two transcription factors (Sfp1 and Rtg3) promote stress resistance in a reciprocal, carbon source-conditional manner. SFP1 is induced in stressed glucose-grown cells, whereas RTG3 is upregulated in stressed lactate-grown cells. Rtg3 and Sfp1 regulate the expression of key stress genes such as CTA4, CAP1 and HOG1 in a carbon source-dependent manner. These mechanisms underlie the stress sensitivity of C. albicans sfp1 cells during growth on glucose, and rtg3 cells on lactate. The data suggest that C. albicans exploits environmentally contingent regulatory mechanisms to retain stress resistance during host colonisation.


Subject(s)
Candida albicans/physiology , Oxidative Stress/physiology , Acclimatization , Adaptation, Physiological , Arabidopsis Proteins , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Candida albicans/genetics , Candida albicans/metabolism , Carbon/metabolism , Cell Wall/metabolism , Culture Media , DNA-Binding Proteins/metabolism , Drug Resistance, Fungal , Fungal Proteins/metabolism , Glucose/metabolism , Monosaccharide Transport Proteins , Osmotic Pressure
9.
Nat Microbiol ; 2: 16238, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27941860

ABSTRACT

As they proliferate, fungi expose antigens at their cell surface that are potent stimulators of the innate immune response, and yet the commensal fungus Candida albicans is able to colonize immuno competent individuals. We show that C. albicans may evade immune detection by presenting a moving immunological target. We report that the exposure of ß-glucan, a key pathogen-associated molecular pattern (PAMP) located at the cell surface of C. albicans and other pathogenic Candida species, is modulated in response to changes in the carbon source. Exposure to lactate induces ß-glucan masking in C. albicans via a signalling pathway that has recruited an evolutionarily conserved receptor (Gpr1) and transcriptional factor (Crz1) from other well-characterized pathways. In response to lactate, these regulators control the expression of cell-wall-related genes that contribute to ß-glucan masking. This represents the first description of active PAMP masking by a Candida species, a process that reduces the visibility of the fungus to the immune system.


Subject(s)
Candida albicans/immunology , Candida albicans/metabolism , Immune Evasion , Lactic Acid/metabolism , Membrane Proteins/metabolism , beta-Glucans/metabolism , Glycosylation
10.
Curr Biol ; 24(11): 1234-40, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24835457

ABSTRACT

Sensing light is the fundamental property of visual systems, with vision in animals being based almost exclusively on opsin photopigments [1]. Rhodopsin also acts as a photoreceptor linked to phototaxis in green algae [2, 3] and has been implicated by chemical means as a light sensor in the flagellated swimming zoospores of the fungus Allomyces reticulatus [4]; however, the signaling mechanism in these fungi remains unknown. Here we use a combination of genome sequencing and molecular inhibition experiments with light-sensing phenotype studies to examine the signaling pathway involved in visual perception in the closely related fungus Blastocladiella emersonii. Our data show that in these fungi, light perception is accomplished by the function of a novel gene fusion (BeGC1) of a type I (microbial) rhodopsin domain and guanylyl cyclase catalytic domain. Photobleaching of rhodopsin function prevents accumulation of cGMP levels and phototaxis of fungal zoospores exposed to green light, whereas inhibition of guanylyl cyclase activity negatively affects fungal phototaxis. Immunofluorescence microscopy localizes the BeGC1 protein to the external surface of the zoospore eyespot positioned close to the base of the swimming flagellum [4, 5], demonstrating this is a photoreceptive organelle composed of lipid droplets. Taken together, these data indicate that Blastocladiomycota fungi have a cGMP signaling pathway involved in phototaxis similar to the vertebrate vision-signaling cascade but composed of protein domain components arranged as a novel gene fusion architecture and of distant evolutionary ancestry to type II rhodopsins of animals.


Subject(s)
Blastocladiella/physiology , Fungal Proteins/genetics , Guanylate Cyclase/genetics , Light , Rhodopsin/genetics , Signal Transduction , Amino Acid Sequence , Base Sequence , Blastocladiella/genetics , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Fungal Proteins/metabolism , Gene Fusion , Guanylate Cyclase/metabolism , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Rhodopsin/metabolism , Sequence Alignment , Visual Perception
11.
BMC Microbiol ; 12: 210, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22985357

ABSTRACT

BACKGROUND: The α-proteobacterium Caulobacter crescentus inhabits low-nutrient environments and can tolerate certain levels of heavy metals in these sites. It has been reported that C. crescentus responds to exposure to various heavy metals by altering the expression of a large number of genes. RESULTS: In this work, we show that the ECF sigma factor σF is one of the regulatory proteins involved in the control of the transcriptional response to chromium and cadmium. Microarray experiments indicate that σF controls eight genes during chromium stress, most of which were previously described as induced by heavy metals. Surprisingly, σF itself is not strongly auto-regulated under metal stress conditions. Interestingly, σF-dependent genes are not induced in the presence of agents that generate reactive oxygen species. Promoter analyses revealed that a conserved σF-dependent sequence is located upstream of all genes of the σF regulon. In addition, we show that the second gene in the sigF operon acts as a negative regulator of σF function, and the encoded protein has been named NrsF (Negative regulator of sigma F). Substitution of two conserved cysteine residues (C131 and C181) in NrsF affects its ability to maintain the expression of σF-dependent genes at basal levels. Furthermore, we show that σF is released into the cytoplasm during chromium stress and in cells carrying point mutations in both conserved cysteines of the protein NrsF. CONCLUSION: A possible mechanism for induction of the σF-dependent genes by chromium and cadmium is the inactivation of the putative anti-sigma factor NrsF, leading to the release of σF to bind RNA polymerase core and drive transcription of its regulon.


Subject(s)
Caulobacter crescentus/drug effects , Caulobacter crescentus/physiology , Gene Expression Regulation, Bacterial , Metals, Heavy/toxicity , Sigma Factor/metabolism , Stress, Physiological , Cadmium/toxicity , Caulobacter crescentus/genetics , Caulobacter crescentus/metabolism , Chromium/toxicity , Gene Expression Profiling , Microarray Analysis , Operon
12.
BioDrugs ; 20(5): 283-91, 2006.
Article in English | MEDLINE | ID: mdl-17025375

ABSTRACT

BACKGROUND: Cyclodextrins are suitable drug delivery systems because of their ability to subtly modify the physical, chemical, and biological properties of guest molecules through labile interactions by formation of inclusion and/or association complexes. Plant cysteine proteinases from Caricaceae and Bromeliaceae are the subject of therapeutic interest, because of their anti-inflammatory, antitumoral, immunogenic, and wound-healing properties. METHODS: In this study, we analyzed the association between beta-cyclodextrin (betaCD) and fraction P1G10 containing the bioactive proteinases from Carica candamarcensis, and described the physicochemical nature of the solid-state self-assembled complexes by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), and nuclear magnetic resonance (NMR), as well as in solution by circular dichroism (CD), isothermal titration calorimetry (ITC), and amidase activity. RESULTS AND DISCUSSION: The physicochemical analyses suggest the formation of a complex between P1G10 and betaCD. Higher secondary interactions, namely hydrophobic interactions, hydrogen bonding and van der Waals forces were observed at higher P1G10 : betaCD mass ratios. These results provide evidence of the occurrence of strong solid-state supramolecular non-covalent interactions between P1G10 and betaCD. Microcalorimetric analysis demonstrates that complexation results in a favorable enthalpic contribution, as has already been described during formation of similar betaCD inclusion compounds. The amidase activity of the complex shows that the enzyme activity is not readily available at 24 hours after dissolution of the complex in aqueous buffer; the proteinase becomes biologically active by the second day and remains stable until day 16, when a gradual decrease occurs, with basal activity attained by day 29. CONCLUSION: The reported results underscore the potential for betaCDs as candidates for complexing cysteine proteinases, resulting in supramolecular arrays with sustained proteolytic activity.


Subject(s)
Carica/chemistry , Latex/chemistry , Peptide Hydrolases/metabolism , beta-Cyclodextrins/chemistry , Amidohydrolases/metabolism , Calorimetry/methods , Calorimetry, Differential Scanning , Circular Dichroism , Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction , beta-Cyclodextrins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...