Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nat Nanotechnol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844663

ABSTRACT

Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.

2.
Chemosphere ; 357: 141974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615955

ABSTRACT

The former mining district of Salsigne is situated in the Orbiel valley. Until the 20th century, it was the first gold mine in Europe and the first arsenic mine in the world. Rehabilitation has been performed during the 20 years that followed closure of the mines and factories, which led to the accumulation of storage of several million tons of waste in this valley. Nevertheless, a detailed description of the air quality of this area is still missing. The goal of the present study is to evaluate atmospheric contamination in the valley and identify the potential sources of this contamination. Active monitors (particulate matter samplers) and passive bioindicators (Tillandsia usneoides) were placed in strategic sites including remote areas. Over the year 2022, we assessed the air quality using microscopic and spectroscopic techniques, as well as environmental risk indicators to report the level of contamination. Results indicate that the overall air quality in the valley is good with PM10 levels in accordance with EU standards. Elemental concentrations in the exposed plants were lower than reported in the literature. Among the different sites studied, Nartau and La Combe du Saut, corresponding to waste storage and former mining industry sites, were the most affected. Chronic exposure over 1 year was highlighted for Fe, Ni, Cu, Pb, Sb and As. Pollution Load Index and Enrichment Factors, which provided valuable information to assess the environmental condition of the valley's air, suggested that dust and resuspension of anthropogenic materials were the principle sources for most of the elements. Finally, this study also highlights that using T. usneoides could be a convenient approach for biomonitoring of metal (loid)-rich particles in the atmosphere within a former mining area, for at least one year. These results in turn allow to better understand the effects of chronic exposure on the ecosystem.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Mining , Particulate Matter , Environmental Monitoring/methods , Air Pollutants/analysis , France , Air Pollution/statistics & numerical data , Particulate Matter/analysis , Metals/analysis , Arsenic/analysis , Metals, Heavy/analysis
3.
Environ Res ; 252(Pt 3): 118603, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38513752

ABSTRACT

In natural systems, organisms are embedded in complex networks where their physiology and community composition is shaped by both biotic and abiotic factors. Therefore, to assess the ecosystem-level effects of contaminants, we must pair complex, multi-trophic field studies with more targeted hypothesis-driven approaches to explore specific actors and mechanisms. Here, we examine aquatic microbiome responses to long-term additions of commercially-available metallic nanoparticles [copper-based (CuNPs) or gold (AuNPs)] and/or nutrients in complex, wetland mesocosms over 9 months, allowing for a full growth cycle of the aquatic plants. We found that both CuNPs and AuNPs (but not nutrient) treatments showed shifts in microbial communities and populations largely at the end of the experiment, as the aquatic plant community senesced. we examine aquatic microbiomes under chronic dosing of NPs and nutrients Simplified microbe-only or microbe + plant incubations revealed that direct effects of AuNPs on aquatic microbiomes can be buffered by plants (regardless of seasonal As mesocosms were dosed weekly, the absence of water column accumulation indicates the partitioning of both metals into other environmental compartments, mainly the floc and aquatic plants photosynthetically-derived organic matter. Overall, this study identifies the potential for NP environmental impacts to be either suppressed by or propagated across trophic levels via the presence of primary producers, highlighting the importance of organismal interactions in mediating emerging contaminants' ecosystem-wide impacts.


Subject(s)
Copper , Gold , Metal Nanoparticles , Microbiota , Wetlands , Metal Nanoparticles/toxicity , Microbiota/drug effects , Water Pollutants, Chemical/toxicity , Plants/drug effects
4.
Environ Sci Technol ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340051

ABSTRACT

Here, isotopically labeled 68ZnO NPs (ZnO NPs) and 68ZnO NPs with a thin 68Zn3(PO4)2 shell (ZnO_Ph NPs) were foliarly applied (40 µg Zn) to pepper plants (Capsicum annuum) to determine the effect of surface chemistry of ZnO NPs on the Zn uptake and systemic translocation to plant organs over 6 weeks. Despite similar dissolution of both Zn-based NPs after 3 weeks, the Zn3(PO4)2 shell on ZnO_Ph NPs (48 ± 12 nm; -18.1 ± 0.6 mV) enabled a leaf uptake of 2.31 ± 0.34 µg of Zn, which is 2.7 times higher than the 0.86 ± 0.18 µg of Zn observed for ZnO NPs (26 ± 8 nm; 14.6 ± 0.4 mV). Further, ZnO_Ph NPs led to higher Zn mobility and phloem loading, while Zn from ZnO NPs was stored in the epidermal tissues, possibly through cell wall immobilization as a storage strategy. These differences led to higher translocation of Zn from the ZnO_Ph NPs within all plant compartments. ZnO_Ph NPs were also more persistent as NPs in the exposed leaf and in the plant stem over time. As a result, the treatment of ZnO_Ph NPs induced significantly higher Zn transport to the fruit than ZnO NPs. As determined by spICP-TOFMS, Zn in the fruit was not in the NP form. These results suggest that the Zn3(PO4)2 shell on ZnO NPs can help promote the transport of Zn to pepper fruits when foliarly applied. This work provides insight into the role of Zn3(PO4)2 on the surface of ZnO NPs in foliar uptake and in planta biodistribution for improving Zn delivery to edible plant parts and ultimately improving the Zn content in food for human consumption.

5.
J Hazard Mater ; 467: 133346, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38320349

ABSTRACT

Food products are prone into contamination after a nuclear emission of radionuclides. While the mechanisms of emission and deposition of ultrafine radioactive particles are well documented, the transfer of these species from the atmosphere into plants is poorly assessed. This is evident in the lack of quantification of particles distributed within plants, especially regarding particles physical-chemical criteria to plant of different properties. Such knowledge gaps raise the concern about the representativeness of risk assessment tools designed for the transfer evaluation of ionic/soluble species to be qualified for simulating insoluble species exposure and proposes a possible underestimation. This highlights the possible need for special particle codes development to be implemented in models for future emissions. In addition, the later tools utilize transfer factors aggregating relevant sub-processes, suggesting another weak point in their overall reliability. As researchers specialized in the nuclear safety and protection, we intend in this perspective, to develop a compressive analysis of the interaction of ultrafine particles with plants of different specificities at different level processes starting from particles retention and gradual translocation to sink organs. This analysis is leveraged in providing insights for possible improvements in the current modeling tools for better real-life scenarios representation.

6.
Molecules ; 29(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257246

ABSTRACT

Although the impacts of plastic pollution have long been recognized, the presence, pervasiveness, and ecotoxicological consequences of microplastic-i.e., plastic particles < 5 mm-contamination have only been explored over the last decade. Far less focus has been attributed to the role of these materials and, particularly, microplastics, as vectors for a multitude of chemicals, including those (un)intentionally added to plastic products, but also organic pollutants already present in the environment. Owing to the ubiquitous presence of microplastics in all environmental matrices and to the diverse nature of their chemical and physical characteristics, thoroughly understanding the mechanistic uptake/release of these compounds is inherently complex, but necessary in order to better assess the potential impacts of both microplastics and associated chemicals on the environment. Herein, we delve into the known processes and factors affecting these mechanisms. We center the discussion on microplastics and discuss some of the most prominent ecological implications of the sorption of this multitude of chemicals. Moreover, the key limitations of the currently available literature are described and a prospective outlook for the future research on the topic is presented.

7.
Environ Sci Technol ; 57(37): 13970-13979, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37669159

ABSTRACT

Gold nanoparticles (AuNPs) are used as models to track and predict NP fates and effects in ecosystems. Previous work found that aquatic macrophytes and their associated biofilm primarily drove the fate of AuNPs within aquatic ecosystems and that seasonality was an important abiotic factor in the fate of AuNPs. Therefore, the present work aims to study if grazers, by feeding on these interfaces, modify the AuNP fate and if this is altered by seasonal fluctuations. Microcosms were dosed with 44.8 µg/L of AuNP weekly for 4 weeks and maintained in environmental chambers simulating Spring and Fall light and temperature conditions. We discovered that seasonal changes and the presence of grazers significantly altered the fate of Au. Higher temperatures in the warmer season increased dissolved organic carbon (DOC) content in the water column, leading to stabilization of Au in the water column. Additionally, snail grazing on biofilm growing on the Egeria densa surface led to a transfer of Au from macrophytes to the organic matter above the sediments. These results demonstrate that climate and grazers significantly impacted the fate of Au from AuNPs, highlighting the role that grazers might have in a large and biologically more complex ecosystem.


Subject(s)
Ecosystem , Metal Nanoparticles , Gold , Seasons , Water
8.
Sci Total Environ ; 808: 152012, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34856284

ABSTRACT

Marine ecosystems represent major sinks for persistent organic pollutants (POPs). Yet, while their regulations fit localized activity and emissions, POPs are mobile and can persist away from their source. The present review draws an environmental diagnostic of the organic substances studied over the past forty months, which ones accumulated the most, and where. Maximum reported concentration was used as a proxy for the accumulation of contaminants. POPs occurrences studied in the Jan 2018-April 2021 period were recorded into a database, along with (i) the geographical location of the sample and its coastal or offshore origin, (ii) the type of compartment analyzed (water vs sediment), as well as (iii) the POPs and the sample physical-chemical parameters reported. In the articles reviewed, maximum reported concentrations of POPs were in the ng/L range in seawater and in the µg/kg range in sediments. Some hotspots presented concentrations high enough to represent a hazard for sea organisms in the water columns (µg/L range) or in surficial sediments (mg/kg range). On a global scale, offshore (>1 km from the coast) maximum reported concentrations were, for the majority of the POPs, equivalent or higher than coastal ones. Finally, a POP solubility threshold (900 mg/L) was observed above which POPs would not be found in offshore waters, but only in sediments. This review highlights that studying POP accumulation away from their sources is fundamental for the diagnostic of long-lasting marine POPs contaminations. Further, POPs lipophilicity is a good predictor for offshore transport, and an indicator of interest for predicting sediment accumulation. Although POPs fate and transport in oceans is complex and require a finer analysis that this review could provide, the present work is a step forward identifying the hotspots in which POPs could be of particular concern, along with chemical indicators to predict for POPs accumulation in marine reservoirs.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Ecosystem , Geologic Sediments , Seawater , Water Pollutants, Chemical/analysis
9.
Environ Pollut ; 291: 118165, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34536642

ABSTRACT

There is a growing need to recover degraded soils to restore their essential ecosystem services and limit damages of anthropic activities onto these systems. Safe and sustainable solutions for long-term recovery must be designed, ideally by recycling existing resources. Using ash from combustion of residual forest biomass at the pulp and paper industry is an interesting and sustainable strategy to recover mining soils. However, formulations must be found to limit the potential toxicity associated with soluble salts and chloride that ash contains. Here, we assessed the effectiveness of three field ash-based amendments for the recovery of three highly acidic soils from Portuguese abandoned mines. Three amendments were tested: an un-stabilized mixture of ash and biological sludge, granulated ash, and granulated ash mixed with composted sludge. One year after application in open field plots (in the scope of LIFE No_Waste project), soil health restoration was evaluated through (i) soil physico-chemical characterization and (ii) soil habitat functions though standardized ecotoxicological tests. This study highlights that stabilized materials provided nutrients, organic matter and alkalinity that corrected soil pH and decreased metal bioavailability, while controlling the release of soluble salts and chloride from ash. This soil improvement correlated with improved soil model organisms' reproduction and survival. For similar amendment, the native soil properties studied (as soil native electrical conductivity) affected the level of organism response. This work provides evidence that ash stabilization, formulation and supplementation with organic matter could be sustainable strategies to restore highly degraded mining soils and to recover their ecological functions. It further highlights the importance of analyzing combined effects on soil physico-chemical properties and ecological function recovery to assess restoration strategy efficiencies in complex multi-stressor environments.


Subject(s)
Soil Pollutants , Soil , Biomass , Ecosystem , Mining , Soil Pollutants/analysis , Soil Pollutants/toxicity
10.
Environ Sci Technol ; 55(20): 13417-13431, 2021 10 19.
Article in English | MEDLINE | ID: mdl-33988374

ABSTRACT

There is increasing pressure on global agricultural systems due to higher food demand, climate change, and environmental concerns. The design of nanostructures is proposed as one of the economically viable technological solutions that can make agrochemical use (fertilizers and pesticides) more efficient through reduced runoff, increased foliar uptake and bioavailability, and decreased environmental impacts. However, gaps in knowledge about the transport of nanoparticles across the leaf surface and their behavior in planta limit the rational design of nanoparticles for foliar delivery with controlled fate and limited risk. Here, the current literature on nano-objects deposited on leaves is reviewed. The different possible foliar routes of uptake (stomata, cuticle, trichomes, hydathodes, necrotic spots) are discussed, along with the paths of translocation, via the phloem, from the leaf to the end sinks (mature and developing tissues, roots, rhizosphere). This review details the interplays between morphological constraints, environmental stimuli, and physical-chemical properties of nanoparticles influencing their fate, transformation, and transport after foliar deposition. A metadata analysis from the existing literature highlighted that plant used for testing nanoparticle fate are most often dicotyledon plants (75%), while monocotyledons (as cereals) are less considered. Correlations on parameters calculated from the literature indicated that nanoparticle dose, size, zeta potential, and affinity to organic phases correlated with leaf-to-sink translocation, demonstrating that targeting nanoparticles to specific plant compartments by design should be achievable. Correlations also showed that time and plant growth seemed to be drivers for in planta mobility, parameters that are largely overlooked in the literature. This review thus highlights the material design opportunities and the knowledge gaps for targeted, stimuli driven deliveries of safe nanomaterials for agriculture.


Subject(s)
Fertilizers , Nanoparticles , Agriculture , Biological Transport , Plant Leaves
11.
Environ Sci Technol ; 55(2): 1231-1241, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33404237

ABSTRACT

Technologies for removal of mercury from produced water and hydrocarbon phases are desired by oil and gas production facilities, oil refineries, and petrochemical plants. Herein, we synthesize and demonstrate the efficacy of an amphiphilic, thiol-abundant (11.8 wt % S, as thiol) polymer nanogel that can remove environmentally relevant mercury species from both produced water and the liquid hydrocarbon. The nanogel disperses in both aqueous and hydrocarbon phases. It has a high sorption affinity for dissolved Hg(II) complexes and Hg-dissolved organic matter complexes found in produced water and elemental (Hg0) and soluble Hg-alkyl thiol species found in hydrocarbons. X-ray absorption spectroscopy analysis indicates that the sorbed mercury is transformed to a surface-bound Hg(SR)2 species in both water and hydrocarbon regardless of its initial speciation. The nanogel had high affinity to native mercury species present in real produced water (>99.5% removal) and in natural gas condensate (>85% removal) samples, removing majority of the mercury species using only a 50 mg L-1 applied dose. This thiolated amphiphilic polymeric nanogel has significant potential to remove environmentally relevant mercury species from both water and hydrocarbon at low applied doses, outperforming reported sorbents like sulfur-impregnated activated carbons because of the mass of accessible thiol groups in the nanogel.


Subject(s)
Mercury , Hydrocarbons , Nanogels , Polymers , Sulfhydryl Compounds , Water
12.
Environ Sci Technol ; 54(20): 13294-13303, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32966049

ABSTRACT

The reactivity of sulfidized nanoscale zerovalent iron (SNZVI) is affected by the amount and species of sulfur in the materials. Here, we assess the impact of the Fe (Fe2+ and Fe3+) and S (S2O42-, S2-, and S62-) precursors used to synthesize both NZVI and SNZVI on the resulting physicochemical properties and reactivity and selectivity with water and trichloroethene (TCE). X-ray diffraction indicated that the Fe precursors altered the crystalline structure of both NZVI and SNZVI. The materials made from the Fe3+ precursor had an expanded lattice in the Fe0 body-centered-cubic (BCC) structure and lower electron-transfer resistance, providing higher reactivity with water (∼2-3 fold) and TCE (∼5-13 fold) than those made from an Fe2+ precursor. The choice of the S precursor controlled the S speciation in the SNZVI particles, as indicated by X-ray absorption spectroscopy. Iron disulfide (FeS2) was the main S species of SNZVI made from S2O42-, whereas iron sulfide (FeS) was the main S species of SNZVI made from S2-/S62-. The former SNZVI was more hydrophobic, reactive with, and selective for TCE compared to the latter SNZVI. These results suggest that the Fe and S precursors can be used to select the conditions of the synthesis process and provide selected physicochemical properties (e.g., S speciation, hydrophobicity, and crystalline structure), reactivity, and selectivity of the SNZVI materials.


Subject(s)
Trichloroethylene , Water Pollutants, Chemical , Iron , Sulfur , Water
13.
Environ Sci Technol ; 54(16): 10170-10180, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32672035

ABSTRACT

Freshwater ecosystems are exposed to engineered nanoparticles through municipal and industrial wastewater-effluent discharges and agricultural nonpoint source runoff. Because previous work has shown that engineered nanoparticles from these sources can accumulate in freshwater algal assemblages, we hypothesized that nanoparticles may affect the biology of primary consumers by altering the processing of two critical nutrients associated with growth and survivorship, nitrogen and phosphorus. We tested this hypothesis by measuring the excretion rates of nitrogen and phosphorus of Physella acuta, a ubiquitous pulmonate snail that grazes heavily on periphyton, exposed to either copper or gold engineered nanoparticles for 6 months in an outdoor wetland mesocosm experiment. Chronic nanoparticle exposure doubled nutrient excretion when compared to the control. Gold nanoparticles increased nitrogen and phosphorus excretion rates more than copper nanoparticles, but overall, both nanoparticles led to higher consumer excretion, despite contrasting particle stability and physiochemical properties. Snails in mesocosms enriched with nitrogen and phosphorus had overall higher excretion rates than ones in ambient (no nutrients added) mesocosms. Stimulation patterns were different between nitrogen and phosphorus excretion, which could have implications for the resulting nutrient ratio in the water column. These results suggest that low concentrations of engineered nanoparticles could alter the metabolism of consumers and increase consumer-mediated nutrient recycling rates, potentially intensifying eutrophication in aquatic systems, for example, the increased persistence of algal blooms as observed in our mesocosm experiment.


Subject(s)
Ecosystem , Metal Nanoparticles , Animals , Copper , Gold , Nitrogen , Nutrients , Phosphorus
14.
ACS Nano ; 14(9): 10954-10965, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32628009

ABSTRACT

Climate change is increasing the severity and length of heat waves. Heat stress limits crop productivity and can make plants more sensitive to other biotic and abiotic stresses. New methods for managing heat stress are needed. Herein, we have developed ∼30 nm diameter poly(acrylic acid)-block-poly(N-isopropylacrylamide) (PAA-b-PNIPAm) star polymers with varying block ratios for temperature-programmed release of a model antimicrobial agent (crystal violet, CV) at plant-relevant pH. Hyperspectral-Enhanced Dark field Microscopy was used to investigate star polymer-leaf interactions and route of entrance. The majority of loaded star polymers entered plant leaves through cuticular and epidermis penetration when applied with the adjuvant Silwet L-77. Up to 43 wt % of star polymers (20 µL at 200 mg L-1 polymer concentration) applied onto tomato (Solanum lycopersicum) leaves translocated to other plant compartments (younger and older shoots, stem, and root) over 3 days. Without Silwet L-77, the star polymers penetrated the cuticle, but mainly accumulated at the epidermis cell layer. The degree of the star polymer temperature responsiveness for CV release in vitro in the range of 20 to 40 °C depends on pH and the ratio of the PAA to PNIPAm blocks. Temperature-responsive release of CV was also observed in vivo in tomato leaves. These results underline the potential for PAA-b-PNIPAm star polymers to provide efficient and temperature-programmed delivery of cationic agrochemicals into plants for protection against heat stress.


Subject(s)
Agrochemicals , Polymers , Hydrogen-Ion Concentration , Temperature
15.
Environ Sci Technol ; 54(14): 8699-8709, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32579348

ABSTRACT

The application of nanoparticles (NPs) to soils, as either fertilizers or fungicides (e.g., CuO NPs), has been proposed to improve the sustainability of agriculture. The observed effects could result directly from the NP-plant interactions or indirectly through effects on the soil microbiome. The objective of this study was to assess the effects of CuO NPs on the changes in the bacterial community structure and nitrogen-cycling-associated functions in a high pH soil and to correlate these changes with nitrate accumulation, soil parameter changes, and plant growth over 28 days. Triticum aestivum seedlings were exposed to 50 mg/kg CuO NPs, 50 mg/kg CuSO4, or 0.5 mg/kg CuSO4 in a standard soil (Lufa 2.1 soil, pH adjusted to 7.6). While Cu treatments reduced nitrate accumulation in the bulk soil, the effects were opposite in the rhizosphere (the soil influenced by root exudates). While nitrate accumulation in bulk soil negatively correlated with total Cu concentration, part of the nitrate concentration in the rhizosphere was explained by root uptake during plant growth, the rest being modulated by Cu treatments. The abundance of genes involved in the nitrogen cycle in the rhizosphere soil correlated with the ionic copper concentration. The increased nitrate concentration in the rhizosphere correlated with an increase of the gene abundance related to the nitrogen fixation and a decrease of denitrification gene abundance. Microbial diversity in bulk or rhizosphere soil under the different treatments alone could not explain these variations, while differences in the assemblages of bacteria associated with these functional gene abundances gave good insights. This study highlights the complexity of microbial N-related function in the rhizosphere and the need to characterize the rhizosphere soil, plant growth and root activity, NP (bio)transformations, along with microbial networks, to understand the impact of agrochemicals (here CuO NPs) on soil fertility.


Subject(s)
Nanoparticles , Soil , Bacteria/genetics , Copper , Nitrogen , Nitrogen Cycle , Rhizosphere , Soil Microbiology , Triticum
16.
Adv Mater ; 32(17): e1906910, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32162726

ABSTRACT

Sulfidized nanoscale zerovalent iron (SNZVI) is a promising material for groundwater remediation. However, the relationships between sulfur content and speciation and the properties of SNZVI materials are unknown, preventing rational design. Here, the effects of sulfur on the crystalline structure, hydrophobicity, sulfur speciation, corrosion potential, and electron transfer resistance are determined. Sulfur incorporation extended the nano-Fe0 BCC lattice parameter, reduced the Fe local vacancies, and lowered the resistance to electron transfer. Impacts of the main sulfur species (FeS and FeS2 ) on hydrophobicity (water contact angles) are consistent with density functional theory calculations for these FeSx phases. These properties well explain the reactivity and selectivity of SNZVI during the reductive dechlorination of trichloroethylene (TCE), a hydrophobic groundwater contaminant. Controlling the amount and speciation of sulfur in the SNZVI made it highly reactive (up to 0.41 L m-2 d-1 ) and selective for TCE degradation over water (up to 240 moles TCE per mole H2 O), with an electron efficiency of up to 70%, and these values are 54-fold, 98-fold, and 160-fold higher than for NZVI, respectively. These findings can guide the rational design of robust SNZVI with properties tailored for specific application scenarios.

17.
Nanoscale ; 12(6): 3630-3636, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-31998910

ABSTRACT

Plant nanobiotechnology has the potential to revolutionize agriculture. However, the lack of effective methods to deliver nanoparticles (NPs) to the precise locations in plants where they are needed impedes these technological innovations. Here, model gold nanoparticles (AuNP) were coated with citrate, bovine serum albumin (BSA) as a protein control, or LM6-M, an antibody with an affinity for functional groups unique to stomata on leaf surfaces to deliver the AuNPs to stomata. One-month-old Vicia faba leaves were exposed via drop deposition to aqueous suspensions of LM6-M-coated AuNPs and allowed to air dry. After rinsing, Au distribution on the leaf surface was investigated by enhanced dark-field microscopy and X-ray fluorescence mapping. While citrate-coated AuNPs randomly covered the plant leaves, LM6M-AuNPs strongly adhered to the stomata and remained on the leaf surface after rinsing, and BSA-AuNPs specifically targeted trichome hairs. To the authors' knowledge, this is the first report of active targeting of live leaf structures using NPs coated with molecular recognition molecules. This proof-of-concept study provides a strategy for future targeted nanopesticide delivery research.


Subject(s)
Antibodies/metabolism , Gold/metabolism , Metal Nanoparticles/chemistry , Plant Stomata/metabolism , Trichomes/metabolism , Antibodies/chemistry , Citrates/chemistry , Citrates/metabolism , Gold/chemistry , Plant Stomata/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Trichomes/chemistry , Vicia faba/chemistry , Vicia faba/metabolism
18.
Environ Sci Technol ; 54(3): 1533-1544, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31951397

ABSTRACT

Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs.


Subject(s)
Metal Nanoparticles , Nanostructures , Copper , Fresh Water , Gold , Seasons , Wetlands
19.
Nat Nanotechnol ; 14(6): 517-522, 2019 06.
Article in English | MEDLINE | ID: mdl-31168073

ABSTRACT

Current agricultural practices, developed during the green revolution, are becoming unsustainable, especially in the face of climate change and growing populations. Nanotechnology will be an important driver for the impending agri-tech revolution that promises a more sustainable, efficient and resilient agricultural system, while promoting food security. Here, we present the most promising new opportunities and approaches for the application of nanotechnology to improve the use efficiency of necessary inputs (light, water, soil) for crop agriculture, and for better managing biotic and abiotic stress. Potential development and implementation barriers are discussed, emphasizing the need for a systems approach to designing proposed nanotechnologies.


Subject(s)
Climate Change , Crop Production , Crops, Agricultural , Food Supply/methods , Nanotechnology , Crop Production/methods , Crop Production/trends , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Humans , Nanotechnology/methods , Nanotechnology/trends
20.
ACS Nano ; 13(5): 5291-5305, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31074967

ABSTRACT

Nanoenabled foliar-applied agrochemicals can potentially be safer and more efficient than conventional products. However, limited understanding about how nanoparticle properties influence their interactions with plant leaves, uptake, translocation through the mesophyll to the vasculature, and transport to the rest of the plant prevents rational design. This study used a combination of Au quantification and spatial analysis to investigate how size (3, 10, or 50 nm) and coating chemistry (PVP versus citrate) of gold nanoparticles (AuNPs) influence these processes. Following wheat foliar exposure to AuNPs suspensions (∼280 ng per plant), adhesion on the leaf surface was increased for smaller sizes, and PVP-AuNPs compared to citrate-AuNPs. After 2 weeks, there was incomplete uptake of citrate-AuNPs with some AuNPs remaining on the outside of the cuticle layer. However, the fraction of citrate-AuNPs that had entered the leaf was translocated efficiently to the plant vasculature. In contrast, for similar sizes, virtually all of the PVP-AuNPs crossed the cuticle layer after 2 weeks, but its transport through the mesophyll cells was lower. As a consequence of PVP-AuNP accumulation in the leaf mesophyll, wheat photosynthesis was impaired. Regardless of their coating and sizes, the majority of the transported AuNPs accumulated in younger shoots (10-30%) and in roots (10-25%), and 5-15% of the NPs <50 nm were exuded into the rhizosphere soil. A greater fraction of larger sizes AuNPs (presenting lower ζ potentials) was transported to the roots. The key hypotheses about the NPs physical-chemical and plant physiology parameters that may matter to predict leaf-to-rhizosphere transport are also discussed.


Subject(s)
Metal Nanoparticles/chemistry , Plant Leaves/metabolism , Plant Roots/metabolism , Triticum/metabolism , Biological Transport/drug effects , Metal Nanoparticles/administration & dosage , Particle Size , Plant Leaves/drug effects , Plant Roots/drug effects , Rhizosphere , Triticum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...