Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Med ; 29(5): 1191-1200, 2023 05.
Article in English | MEDLINE | ID: mdl-37106166

ABSTRACT

Erythropoietin (Epo) is the master regulator of erythropoiesis and oxygen homeostasis. Despite its physiological importance, the molecular and genomic contexts of the cells responsible for renal Epo production remain unclear, limiting more-effective therapies for anemia. Here, we performed single-cell RNA and transposase-accessible chromatin (ATAC) sequencing of an Epo reporter mouse to molecularly identify Epo-producing cells under hypoxic conditions. Our data indicate that a distinct population of kidney stroma, which we term Norn cells, is the major source of endocrine Epo production in mice. We use these datasets to identify the markers, signaling pathways and transcriptional circuits characteristic of Norn cells. Using single-cell RNA sequencing and RNA in situ hybridization in human kidney tissues, we further provide evidence that this cell population is conserved in humans. These preliminary findings open new avenues to functionally dissect EPO gene regulation in health and disease and may serve as groundwork to improve erythropoiesis-stimulating therapies.


Subject(s)
Anemia , Erythropoietin , Animals , Humans , Mice , Anemia/genetics , Erythropoiesis/genetics , Erythropoietin/genetics , Kidney/metabolism , RNA/metabolism
2.
Blood Adv ; 6(5): 1406-1419, 2022 03 08.
Article in English | MEDLINE | ID: mdl-34814180

ABSTRACT

The transcription factor C/EBPa initiates the neutrophil gene expression program in the bone marrow (BM). Knockouts of the Cebpa gene or its +37kb enhancer in mice show 2 major findings: (1) neutropenia in BM and blood; (2) decrease in long-term hematopoietic stem cell (LT-HSC) numbers. Whether the latter finding is cell-autonomous (intrinsic) to the LT-HSCs or an extrinsic event exerted on the stem cell compartment remained an open question. Flow cytometric analysis of the Cebpa +37kb enhancer knockout model revealed that the reduction in LT-HSC numbers observed was proportional to the degree of neutropenia. Single-cell transcriptomics of wild-type (WT) mouse BM showed that Cebpa is predominantly expressed in early myeloid-biased progenitors but not in LT-HSCs. These observations suggest that the negative effect on LT-HSCs is an extrinsic event caused by neutropenia. We transplanted whole BMs from +37kb enhancer-deleted mice and found that 40% of the recipient mice acquired full-blown neutropenia with severe dysplasia and a significant reduction in the total LT-HSC population. The other 60% showed initial signs of myeloid differentiation defects and dysplasia when they were sacrificed, suggesting they were in an early stage of the same pathological process. This phenotype was not seen in mice transplanted with WT BM. Altogether, these results indicate that Cebpa enhancer deletion causes cell-autonomous neutropenia, which reprograms and disturbs the quiescence of HSCs, leading to a systemic impairment of the hematopoietic process.


Subject(s)
Hematopoiesis , Neutropenia , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Hematopoietic Stem Cells/metabolism , Mice , Mice, Knockout , Neutropenia/genetics , Transcription Factors/metabolism
4.
Cell Rep ; 28(12): 3022-3031.e7, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533028

ABSTRACT

Acute myeloid leukemia (AML) is associated with mutations in transcriptional and epigenetic regulator genes impairing myeloid differentiation. The t(8;21)(q22;q22) translocation generates the RUNX1-ETO fusion protein, which interferes with the hematopoietic master regulator RUNX1. We previously showed that the maintenance of t(8;21) AML is dependent on RUNX1-ETO expression. Its depletion causes extensive changes in transcription factor binding, as well as gene expression, and initiates myeloid differentiation. However, how these processes are connected within a gene regulatory network is unclear. To address this question, we performed Promoter-Capture Hi-C assays, with or without RUNX1-ETO depletion and assigned interacting cis-regulatory elements to their respective genes. To construct a RUNX1-ETO-dependent gene regulatory network maintaining AML, we integrated cis-regulatory element interactions with gene expression and transcription factor binding data. This analysis shows that RUNX1-ETO participates in cis-regulatory element interactions. However, differential interactions following RUNX1-ETO depletion are driven by alterations in the binding of RUNX1-ETO-regulated transcription factors.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Core Binding Factor Alpha 2 Subunit , Enhancer Elements, Genetic , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute , Oncogene Proteins, Fusion , Promoter Regions, Genetic , RUNX1 Translocation Partner 1 Protein , Transcription Factor AP-1 , Translocation, Genetic , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 21/metabolism , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 8/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Gene Deletion , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , RUNX1 Translocation Partner 1 Protein/genetics , RUNX1 Translocation Partner 1 Protein/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
5.
Cancer Discov ; 7(8): 868-883, 2017 08.
Article in English | MEDLINE | ID: mdl-28408400

ABSTRACT

We performed cytosine methylation sequencing on genetically diverse patients with acute myeloid leukemia (AML) and found leukemic DNA methylation patterning is primarily driven by nonpromoter regulatory elements and CpG shores. Enhancers displayed stronger differential methylation than promoters, consisting predominantly of hypomethylation. AMLs with dominant hypermethylation featured greater epigenetic disruption of promoters, whereas those with dominant hypomethylation displayed greater disruption of distal and intronic regions. Mutations in IDH and DNMT3A had opposing and mutually exclusive effects on the epigenome. Notably, co-occurrence of both mutations resulted in epigenetic antagonism, with most CpGs affected by either mutation alone no longer affected in double-mutant AMLs. Importantly, this epigenetic antagonism precedes malignant transformation and can be observed in preleukemic LSK cells from Idh2R140Q or Dnmt3aR882H single-mutant and Idh2R140Q/Dnmt3aR882H double-mutant mice. Notably, IDH/DNMT3A double-mutant AMLs manifested upregulation of a RAS signaling signature and displayed unique sensitivity to MEK inhibition ex vivo as compared with AMLs with either single mutation.Significance: AML is biologically heterogeneous with subtypes characterized by specific genetic and epigenetic abnormalities. Comprehensive DNA methylation profiling revealed that differential methylation of nonpromoter regulatory elements is a driver of epigenetic identity, that gene mutations can be context-dependent, and that co-occurrence of mutations in epigenetic modifiers can result in epigenetic antagonism. Cancer Discov; 7(8); 868-83. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 783.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/therapy , Adult , Aged , Animals , DNA Methyltransferase 3A , Disease Models, Animal , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic/genetics , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Mutation , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid/genetics , ras Proteins/genetics
6.
Blood ; 129(15): 2083-2091, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28179278

ABSTRACT

One of the most studied transcription factors in hematopoiesis is the leucine zipper CCAAT-enhancer binding protein α (C/EBPα), which is mainly involved in cell fate decisions for myeloid differentiation. Its involvement in acute myeloid leukemia (AML) is diverse, with patients frequently exhibiting mutations, deregulation of gene expression, or alterations in the function of C/EBPα. In this review, we emphasize the importance of C/EBPα for neutrophil maturation, its role in myeloid priming of hematopoietic stem and progenitor cells, and its indispensable requirement for AML development. We discuss that mutations in the open reading frame of CEBPA lead to an altered C/EBPα function, affecting the expression of downstream genes and consequently deregulating myelopoiesis. The emerging transcriptional mechanisms of CEBPA are discussed based on recent studies. Novel insights on how these mechanisms may be deregulated by oncoproteins or mutations/variants in CEBPA enhancers are suggested in principal to reveal novel mechanisms of how CEBPA is deregulated at the transcriptional level.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Cell Transformation, Neoplastic , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute , Mutation , Myelopoiesis , Neoplasm Proteins , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neutrophils/metabolism , Neutrophils/pathology , Open Reading Frames
7.
Blood ; 127(24): 2991-3003, 2016 06 16.
Article in English | MEDLINE | ID: mdl-26966090

ABSTRACT

Neutrophilic differentiation is dependent on CCAAT enhancer-binding protein α (C/EBPα), a transcription factor expressed in multiple organs including the bone marrow. Using functional genomic technologies in combination with clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 genome editing and in vivo mouse modeling, we show that CEBPA is located in a 170-kb topological-associated domain that contains 14 potential enhancers. Of these, 1 enhancer located +42 kb from CEBPA is active and engages with the CEBPA promoter in myeloid cells only. Germ line deletion of the homologous enhancer in mice in vivo reduces Cebpa levels exclusively in hematopoietic stem cells (HSCs) and myeloid-primed progenitor cells leading to severe defects in the granulocytic lineage, without affecting any other Cebpa-expressing organ studied. The enhancer-deleted progenitor cells lose their myeloid transcription program and are blocked in differentiation. Deletion of the enhancer also causes loss of HSC maintenance. We conclude that a single +42-kb enhancer is essential for CEBPA expression in myeloid cells only.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Enhancer Elements, Genetic , Myeloid Cells/physiology , Myelopoiesis/genetics , Neutrophils/physiology , Animals , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Line, Tumor , Gene Expression Regulation, Developmental , HEK293 Cells , HL-60 Cells , HeLa Cells , Hep G2 Cells , Humans , Jurkat Cells , K562 Cells , Mice , Mice, Knockout , U937 Cells
9.
Nat Chem Biol ; 11(8): 571-578, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26167872

ABSTRACT

The CEBPA gene is mutated in 9% of patients with acute myeloid leukemia (AML). Selective expression of a short (30-kDa) CCAAT-enhancer binding protein-α (C/EBPα) translational isoform, termed p30, represents the most common type of CEBPA mutation in AML. The molecular mechanisms underlying p30-mediated transformation remain incompletely understood. We show that C/EBPα p30, but not the normal p42 isoform, preferentially interacts with Wdr5, a key component of SET/MLL (SET-domain/mixed-lineage leukemia) histone-methyltransferase complexes. Accordingly, p30-bound genomic regions were enriched for MLL-dependent H3K4me3 marks. The p30-dependent increase in self-renewal and inhibition of myeloid differentiation required Wdr5, as downregulation of the latter inhibited proliferation and restored differentiation in p30-dependent AML models. OICR-9429 is a new small-molecule antagonist of the Wdr5-MLL interaction. This compound selectively inhibited proliferation and induced differentiation in p30-expressing human AML cells. Our data reveal the mechanism of p30-dependent transformation and establish the essential p30 cofactor Wdr5 as a therapeutic target in CEBPA-mutant AML.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Dihydropyridines/pharmacology , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Amino Acid Sequence , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Molecular Docking Simulation , Molecular Sequence Data , Molecular Targeted Therapy , Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Signal Transduction , Tumor Cells, Cultured
10.
Cell ; 157(2): 369-381, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24703711

ABSTRACT

Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome.


Subject(s)
Chromosomes, Human, Pair 3 , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic , GATA2 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Proto-Oncogenes/genetics , Transcription Factors/genetics , Cell Line, Tumor , Chromosome Inversion , Humans , MDS1 and EVI1 Complex Locus Protein , Promoter Regions, Genetic , Transcriptional Activation , Translocation, Genetic
11.
J Clin Invest ; 122(12): 4490-504, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23160200

ABSTRACT

C/EBPs are a family of transcription factors that regulate growth control and differentiation of various tissues. We found that C/EBPγ is highly upregulated in a subset of acute myeloid leukemia (AML) samples characterized by C/EBPα hypermethylation/silencing. Similarly, C/EBPγ was upregulated in murine hematopoietic stem/progenitor cells lacking C/EBPα, as C/EBPα mediates C/EBPγ suppression. Studies in myeloid cells demonstrated that CEBPG overexpression blocked neutrophilic differentiation. Further, downregulation of Cebpg in murine Cebpa-deficient stem/progenitor cells or in human CEBPA-silenced AML samples restored granulocytic differentiation. In addition, treatment of these leukemias with demethylating agents restored the C/EBPα-C/EBPγ balance and upregulated the expression of myeloid differentiation markers. Our results indicate that C/EBPγ mediates the myeloid differentiation arrest induced by C/EBPα deficiency and that targeting the C/EBPα-C/EBPγ axis rescues neutrophilic differentiation in this unique subset of AMLs.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , Cell Differentiation , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/metabolism , Animals , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , CCAAT-Enhancer-Binding Proteins/metabolism , Cells, Cultured , Chromatin Immunoprecipitation , DNA Methylation , DNA Modification Methylases/antagonists & inhibitors , Decitabine , Epigenesis, Genetic , Genes, Reporter , Granulocyte Colony-Stimulating Factor/physiology , Granulocytes , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Luciferases, Renilla/biosynthesis , Luciferases, Renilla/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Neutrophils/metabolism , Neutrophils/physiology , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Protein Binding , Stem Cells/metabolism , Stem Cells/physiology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...