Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Liposome Res ; 32(1): 32-44, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33322974

ABSTRACT

The interactions of egg yolk phosphatidylcholine liposomes with F108 and F127 triblock copolymers, in the monomer state, were analyzed by isothermal titration calorimetry (ITC) at 37 °C. According to the results, the critical micelle concentration was determined to be 0.4 and 0.04 wt.% for F108 and F127, respectively, by surface tension at 37 °C. According to the results, liposomes/poloxamers were not favoured energetically, since endothermic interactions were observed. However, positive changes in entropy promoted a spontaneous process. F127 had a greater partition coefficient (51.97 ± 1.77 × 104), stronger affinity, than F108 (8.19 ± 0.37 × 104) towards the vesicle lipid bilayer due to its larger hydrophobic block. After the ITC experiments, an increased vesicle size (within about 1-3 nm average) by dynamic light scattering and the formation of bilayer discs by electron microscopy (EM) was observed at low copolymer concentrations (0.57 mol% of F108 and 1.01 mol% of F127). The EM and ITC results confirmed the intimate association of the copolymers with the membrane instead of being simply absorbed onto the bilayer surface. Our results indicate that the temperature of the system (37 °C), the copolymer concentration and hydrophobic chain length are important factors for the interaction of poloxamers with lipid bilayers and the stability of liposomes.


Subject(s)
Liposomes , Polyethylenes , Calorimetry/methods , Lipid Bilayers/chemistry , Liposomes/chemistry , Polypropylenes , Temperature , Thermodynamics
2.
J Colloid Interface Sci ; 380(1): 75-82, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22652588

ABSTRACT

The aim of this works is to study an oil-in-water emulsion stabilized with a triblock copolymer Synperonic F127 which presents a double size distribution of oil droplets. The emulsions were studied experimentally by means of differential scanning calorimetry (DSC) and dynamic light scattering (DLS). The DSC analysis was carried out focusing on the cooling behavior of the emulsion. The cooling thermograms of the oil-in-water emulsion revealed two crystallization peaks with Gaussian profile; the interesting characteristic is that both peaks are separated in temperature. In accordance to previous works for a single oil dispersed within an aqueous phase, the DSC technique must show a single Gaussian peak of crystallization attributable to a size distribution of droplets. In the present case of emulsions stabilized with 1 g/L of Synperonic F127, the aggregation behavior of triblock as a function of temperature allows to produce an emulsion with a double size droplet distribution. Comparison with emulsions stabilized with 2 and 4 wt% of non-ionic Tween 20 are also presented.


Subject(s)
Emulsions/chemistry , Oils/chemistry , Polyethylenes/chemistry , Polypropylenes/chemistry , Water/chemistry , Calorimetry, Differential Scanning , Crystallization , Polysorbates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...