Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Acta Biomater ; 174: 116-126, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38101556

ABSTRACT

Fibrillar collagens and glycosaminoglycans (GAGs) are structural biomolecules that are natively abundant to the extracellular matrix (ECM). Prior studies have quantified the effects of GAGs on the bulk mechanical properties of the ECM. However, there remains a lack of experimental studies on how GAGs alter other biophysical properties of the ECM, including ones that operate at the length scales of individual cells such as mass transport efficiency and matrix microstructure. This study focuses on the GAG molecules chondroitin sulfate (CS), dermatan sulfate (DS), and hyaluronic acid (HA). CS and DS are stereoisomers while HA is the only non-sulfated GAG. We characterized and decoupled the effects of these GAG molecules on the stiffness, transport, and matrix microarchitecture properties of type I collagen hydrogels using mechanical indentation testing, microfluidics, and confocal reflectance imaging, respectively. We complement these biophysical measurements with turbidity assays to profile collagen aggregate formation. Surprisingly, only HA enhanced the ECM indentation modulus, while all three GAGs had no effect on hydraulic permeability. Strikingly, we show that CS, DS, and HA differentially regulate the matrix microarchitecture of hydrogels due to their alterations to the kinetics of collagen self-assembly. In addition to providing information on how GAGs define key physical properties of the ECM, this work shows new ways in which stiffness measurements, microfluidics, microscopy, and turbidity kinetics can be used complementarily to reveal details of collagen self-assembly and structure. STATEMENT OF SIGNIFICANCE: Collagen and glycosaminoglycans (GAGs) are integral to the structure, function, and bioactivity of the extracellular matrix (ECM). Despite widespread interest in collagen-GAG composite hydrogels, there is a lack of quantitative understanding of how different GAGs alter the biophysical properties of the ECM across tissue, cellular, and subcellular length scales. Here we show using mechanical, microfluidic, microscopy, and analytical methods and measurements that the GAG molecules chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially regulate the mechanical, transport, and microstructural properties of hydrogels due to their alterations to the kinetics of collagen self-assembly. As such, these results will inform improved design and utilization of collagen-based scaffolds of tailored composition, mechanical properties, molecular availability due to mass transport, and microarchitecture.


Subject(s)
Chondroitin Sulfates , Hyaluronic Acid , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/chemistry , Hyaluronic Acid/pharmacology , Dermatan Sulfate/pharmacology , Dermatan Sulfate/chemistry , Dermatan Sulfate/ultrastructure , Hydrogels/pharmacology , Glycosaminoglycans , Collagen , Extracellular Matrix
2.
bioRxiv ; 2023 May 23.
Article in English | MEDLINE | ID: mdl-37293049

ABSTRACT

Fibrillar collagens and glycosaminoglycans (GAGs) are structural biomolecules that are natively abundant to the extracellular matrix (ECM). Prior studies have quantified the effects of GAGs on the bulk mechanical properties of the ECM. However, there remains a lack of experimental studies on how GAGs alter other biophysical properties of the ECM, including ones that operate at the length scales of individual cells such as mass transport efficiency and matrix microstructure. Here we characterized and decoupled the effects of the GAG molecules chondroitin sulfate (CS) dermatan sulfate (DS) and hyaluronic acid (HA) on the stiffness (indentation modulus), transport (hydraulic permeability), and matrix microarchitecture (pore size and fiber radius) properties of collagen-based hydrogels. We complement these biophysical measurements of collagen hydrogels with turbidity assays to profile collagen aggregate formation. Here we show that CS, DS, and HA differentially regulate the biophysical properties of hydrogels due to their alterations to the kinetics of collagen self-assembly. In addition to providing information on how GAGs play significant roles in defining key physical properties of the ECM, this work shows new ways in which stiffness measurements, microscopy, microfluidics, and turbidity kinetics can be used complementary to reveal details of collagen self-assembly and structure.

3.
ACS Appl Mater Interfaces ; 15(12): 15047-15058, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36916875

ABSTRACT

Sprouting angiogenesis is orchestrated by an intricate balance of biochemical and mechanical cues in the local tissue microenvironment. Interstitial flow has been established as a potent regulator of angiogenesis. Similarly, extracellular matrix (ECM) physical properties, such as stiffness and microarchitecture, have also emerged as important mediators of angiogenesis. However, the interplay between interstitial flow and ECM physical properties in the initiation and control of angiogenesis is poorly understood. Using a three-dimensional (3D) microfluidic tissue analogue of angiogenic sprouting with defined interstitial flow superimposed over ECM with well-characterized physical properties, we found that the addition of hyaluronan (HA) to collagen-based matrices significantly enhances sprouting induced by interstitial flow compared to responses in collagen-only hydrogels. We confirmed that both the stiffness and matrix pore size of collagen-only hydrogels were increased by the addition of HA. Interestingly, interstitial flow-potentiated sprouting responses in collagen/HA matrices were not affected when functionally blocking the HA receptor CD44. In contrast, enzymatic depletion of HA in collagen/HA matrices with hyaluronidase (HAdase) resulted in decreased stiffness, pore size, and interstitial flow-mediated sprouting to the levels observed in collagen-only matrices. Taken together, these results suggest that HA enhances interstitial flow-mediated angiogenic sprouting through its alterations to collagen ECM stiffness and pore size.


Subject(s)
Cues , Extracellular Matrix , Extracellular Matrix/chemistry , Collagen/chemistry , Cardiovascular Physiological Phenomena , Hydrogels/pharmacology
4.
ACS Appl Mater Interfaces ; 14(50): 55307-55319, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36509424

ABSTRACT

The interactions of cells with signaling molecules present in their local microenvironment maintain cell proliferation, differentiation, and spatial organization and mediate progression of diseases such as metabolic disorders and cancer. Real-time monitoring of the interactions between cells and their extracellular ligands in a three-dimensional (3D) microenvironment can inform detection and understanding of cell processes and the development of effective therapeutic agents. DNA origami technology allows for the design and fabrication of biocompatible and 3D functional nanodevices via molecular self-assembly for various applications including molecular sensing. Here, we report a robust method to monitor live cell interactions with molecules in their surrounding environment in a 3D tissue model using a microfluidic device. We used a DNA origami cell sensing platform (CSP) to detect two specific nucleic acid sequences on the membrane of B cells and dendritic cells. We further demonstrated real-time detection of biomolecules with the DNA sensing platform on the surface of dendritic cells in a 3D microfluidic tissue model. Our results establish the integration of live cells with membranes engineered with DNA nanodevices into microfluidic chips as a highly capable biosensor approach to investigate subcellular interactions in physiologically relevant 3D environments under controlled biomolecular transport.


Subject(s)
Nanostructures , Nanotechnology , Nanotechnology/methods , DNA , Collagen , Cell Communication , Nucleic Acid Conformation
5.
Front Bioeng Biotechnol ; 10: 888431, 2022.
Article in English | MEDLINE | ID: mdl-36118583

ABSTRACT

Cancer-associated fibroblasts (CAFs) play an active role in remodeling the local tumor stroma to support tumor initiation, growth, invasion, metastasis, and therapeutic resistance. The CAF-secreted chemokine, CXCL12, has been directly implicated in the tumorigenic progression of carcinomas, including breast cancer. Using a 3-D in vitro microfluidic-based microtissue model, we demonstrate that stromal CXCL12 secreted by CAFs has a potent effect on increasing the vascular permeability of local blood microvessel analogues through paracrine signaling. Moreover, genetic deletion of fibroblast-specific CXCL12 significantly reduced vessel permeability compared to CXCL12 secreting CAFs within the recapitulated tumor microenvironment (TME). We suspected that fibroblast-mediated extracellular matrix (ECM) remodeling and contraction indirectly accounted for this change in vessel permeability. To this end, we investigated the autocrine effects of CXCL12 on fibroblast contractility and determined that antagonistic blocking of CXCL12 did not have a substantial effect on ECM contraction. Our findings indicate that fibroblast-secreted CXCL12 has a significant role in promoting a leakier endothelium hospitable to angiogenesis and tumor cell intravasation; however, autocrine CXCL12 is not the primary upstream trigger of CAF contractility.

6.
Breast Cancer Res ; 22(1): 41, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32370801

ABSTRACT

BACKGROUND: In utero endocrine disruption is linked to increased risk of breast cancer later in life. Despite numerous studies establishing this linkage, the long-term molecular changes that predispose mammary cells to carcinogenic transformation are unknown. Herein, we investigated how endocrine disrupting compounds (EDCs) drive changes within the stroma that can contribute to breast cancer susceptibility. METHODS: We utilized bisphenol A (BPA) as a model of estrogenic endocrine disruption to analyze the long-term consequences in the stroma. Deregulated genes were identified by RNA-seq transcriptional profiling of adult primary fibroblasts, isolated from female mice exposed to in utero BPA. Collagen staining, collagen imaging techniques, and permeability assays were used to characterize changes to the extracellular matrix. Finally, gland stiffness tests were performed on exposed and control mammary glands. RESULTS: We identified significant transcriptional deregulation of adult fibroblasts exposed to in utero BPA. Deregulated genes were associated with cancer pathways and specifically extracellular matrix composition. Multiple collagen genes were more highly expressed in the BPA-exposed fibroblasts resulting in increased collagen deposition in the adult mammary gland. This transcriptional reprogramming of BPA-exposed fibroblasts generates a less permeable extracellular matrix and a stiffer mammary gland. These phenotypes were only observed in adult 12-week-old, but not 4-week-old, mice. Additionally, diethylstilbestrol, known to increase breast cancer risk in humans, also increases gland stiffness similar to BPA, while bisphenol S does not. CONCLUSIONS: As breast stiffness, extracellular matrix density, and collagen deposition have been directly linked to breast cancer risk, these data mechanistically connect EDC exposures to molecular alterations associated with increased disease susceptibility. These alterations develop over time and thus contribute to cancer risk in adulthood.


Subject(s)
Endocrine Disruptors/toxicity , Extracellular Matrix/pathology , Mammary Glands, Animal/pathology , Prenatal Exposure Delayed Effects/pathology , Stromal Cells/pathology , Animals , Benzhydryl Compounds/toxicity , Estrogens, Non-Steroidal/pharmacology , Extracellular Matrix/drug effects , Extracellular Matrix/immunology , Female , Fibroblasts/immunology , Fibroblasts/pathology , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/immunology , Mammary Glands, Animal/metabolism , Mice , Phenols/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Stromal Cells/drug effects , Stromal Cells/immunology , Transcriptome
7.
ACS Biomater Sci Eng ; 6(3): 1408-1417, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32292818

ABSTRACT

This paper describes an experimental characterization scheme of the biophysical properties of reconstituted hydrogel matrices based on indentation testing, quantification of transport via microfluidics, and confocal reflectance microscopy analysis. While methods for characterizing hydrogels exist and are widely used, they often do not measure diffusive and convective transport concurrently, determine the relationship between microstructure and transport properties, and decouple matrix mechanics and transport properties. Our integrated approach enabled independent and quantitative measurements of the structural, mechanical, and transport properties of hydrogels in a single study. We used fibrillar type I collagen as the base matrix and investigated the effects of two different matrix modifications: (1) cross-linking with human recombinant tissue transglutaminase II (hrTGII) and (2) supplementation with the nonfibrillar matrix constituent hyaluronic acid (HA). hrTGII modified the matrix structure and transport but not mechanical parameters. Furthermore, changes in the matrix structure due to hrTGII were seen to be dependent on the concentration of collagen. In contrast, supplementation of HA at different collagen concentrations altered the matrix microstructure and mechanical indentation behavior but not transport parameters. These experimental observations reveal the important relationship between extracellular matrix (ECM) composition and biophysical properties. The integrated techniques are versatile, robust, and accessible; and as matrix-cell interactions are instrumental for many biological processes, the methods and findings described here should be broadly applicable for characterizing hydrogel materials used for three-dimensional (3-D) tissue-engineered culture models.


Subject(s)
Fibrillar Collagens , Hydrogels , Collagen , Extracellular Matrix , Humans , Hyaluronic Acid
8.
Adv Healthc Mater ; 9(4): e1901399, 2020 02.
Article in English | MEDLINE | ID: mdl-31944591

ABSTRACT

Angiogenesis is associated with increased vessel sprouting and permeability. Important mediators of these angiogenic responses include local environment of signaling molecules and supporting extracellular matrix (ECM). However, dissecting the interplay of these instructive signals in vivo with multiple cells and extracellular molecules remains a central challenge. Here, microfluidic biomimicry is integrated with 3D ECM hydrogels that are well-characterized for molecular-binding and mechanical properties to reconstitute vessel-like analogues in vitro. This study focuses on three distinct isoforms of the pro-metastatic chemokine CXCL12. In collagen-only hydrogel, CXCL12-α is the most potent isoform in promoting sprouting and permeability, followed by CXCL12-ß and CXCL12-γ. Strikingly, addition of hyaluronan (HA), a large and negatively charged glycosaminoglycan, with collagen matrices selectively increases vessel sprouting and permeability conferred by CXCL12-γ. This outcome is supported by the measured binding affinities to collagen/HA ECM, suggesting that negatively charged HA increases the binding of CXCL12-γ to augment its angiogenic potency. Moreover, it is shown that addition of HA to collagen matrices on its own decreases vessel sprouting and permeability, and these responses are nullified by blocking the HA receptor CD44. Collectively, these results demonstrate that differences in binding to extracellular HA help underlie CXCL12 isoform-specific responses toward directing angiogenesis.


Subject(s)
Capillary Permeability , Chemokine CXCL12 , Collagen , Extracellular Matrix , Humans , Hyaluronic Acid , Protein Isoforms
9.
Article in English | MEDLINE | ID: mdl-30761297

ABSTRACT

The physical remodeling associated with cancer progression results in barriers to mass transport in the tumor interstitial space. This hindrance ultimately affects the distribution of macromolecules that govern cell fate and potency of cancer therapies. Therefore, knowing how specific extracellular matrix (ECM) and cellular components regulate transport in the tumor interstitium could lead to matrix normalizing strategies that improve patient outcome. Studies over the past decades have provided quantitative insights into interstitial transport in tumors by characterizing two governing parameters: (1) molecular diffusivity and (2) hydraulic conductivity. However, many of the conventional techniques used to measure these parameters are limited due to their inability to experimentally manipulate the physical and cellular environments of tumors. Here, we examine the application and future opportunities of microfluidic systems for identifying the physiochemical mediators of mass transport in the tumor ECM. Further advancement and adoption of microfluidic systems to quantify tumor transport parameters has potential to bridge basic science with translational research for advancing personalized medicine in oncology.

10.
Life Sci Alliance ; 1(5): e201800190, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30456390

ABSTRACT

The contribution of the tumor microenvironment to pancreatic ductal adenocarcinoma (PDAC) development is currently unclear. We therefore examined the consequences of disrupting paracrine Hedgehog (HH) signaling in PDAC stroma. Herein, we show that ablation of the key HH signaling gene Smoothened (Smo) in stromal fibroblasts led to increased proliferation of pancreatic tumor cells. Furthermore, Smo deletion resulted in proteasomal degradation of the tumor suppressor PTEN and activation of oncogenic protein kinase B (AKT) in fibroblasts. An unbiased proteomic screen identified RNF5 as a novel E3 ubiquitin ligase responsible for degradation of phosphatase and tensin homolog (PTEN) in Smo-null fibroblasts. Ring Finger Protein 5 (Rnf5) knockdown or pharmacological inhibition of glycogen synthase kinase 3ß (GSKß), the kinase that marks PTEN for ubiquitination, rescued PTEN levels and reversed the oncogenic phenotype, identifying a new node of PTEN regulation. In PDAC patients, low stromal PTEN correlated with reduced overall survival. Mechanistically, PTEN loss decreased hydraulic permeability of the extracellular matrix, which was reversed by hyaluronidase treatment. These results define non-cell autonomous tumor-promoting mechanisms activated by disruption of the HH/PTEN axis and identifies new targets for restoring stromal tumor-suppressive functions.

11.
Neoplasia ; 19(6): 496-508, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28501760

ABSTRACT

The extracellular matrix (ECM) is critical for mammary ductal development and differentiation, but how mammary fibroblasts regulate ECM remodeling remains to be elucidated. Herein, we used a mouse genetic model to activate platelet derived growth factor receptor-alpha (PDGFRα) specifically in the stroma. Hyperactivation of PDGFRα in the mammary stroma severely hindered pubertal mammary ductal morphogenesis, but did not interrupt the lobuloalveolar differentiation program. Increased stromal PDGFRα signaling induced mammary fat pad fibrosis with a corresponding increase in interstitial hyaluronic acid (HA) and collagen deposition. Mammary fibroblasts with PDGFRα hyperactivation also decreased hydraulic permeability of a collagen substrate in an in vitro microfluidic device assay, which was mitigated by inhibition of either PDGFRα or HA. Fibrosis seen in this model significantly increased the overall stiffness of the mammary gland as measured by atomic force microscopy. Further, mammary tumor cells injected orthotopically in the fat pads of mice with stromal activation of PDGFRα grew larger tumors compared to controls. Taken together, our data establish that aberrant stromal PDGFRα signaling disrupts ECM homeostasis during mammary gland development, resulting in increased mammary stiffness and increased potential for tumor growth.


Subject(s)
Mammary Glands, Animal/growth & development , Mammary Glands, Human/growth & development , Mammary Neoplasms, Animal/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Animals , Cell Differentiation/genetics , Extracellular Matrix/genetics , Female , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Hyaluronic Acid/administration & dosage , Mammary Glands, Animal/pathology , Mammary Glands, Human/pathology , Mammary Neoplasms, Animal/pathology , Mice , Morphogenesis/genetics , Signal Transduction , Stromal Cells/pathology
12.
J Acoust Soc Am ; 136(6): 3018, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25480051

ABSTRACT

Cavitation-based histotripsy uses high-intensity focused ultrasound at low duty factor to create bubble clouds inside tissue to liquefy a region, and provides better fidelity to planned lesion coordinates and the ability to perform real-time monitoring. The goal of this study was to identify the most important mechanical properties for predicting lesion dimensions, among these three: Young's modulus, bending strength, and fracture toughness. Lesions were generated inside tissue-mimicking agar, and correlations were examined between the mechanical properties and the lesion dimensions, quantified by lesion volume and by the width and length of the equivalent bubble cluster. Histotripsy was applied to agar samples with varied properties. A cuboid of 4.5 mm width (lateral to focal plane) and 6 mm depth (along beam axis) was scanned in a raster pattern with respective step sizes of 0.75 and 3 mm. The exposure at each treatment location was either 15, 30, or 60 s. Results showed that only Young's modulus influenced histotripsy's ablative ability and was significantly correlated with lesion volume and bubble cluster dimensions. The other two properties had negligible effects on lesion formation. Also, exposure time differentially affected the width and depth of the bubble cluster volume.

13.
Rev. colomb. radiol ; 22(2): 3186-3188, mar. 2011.
Article in Spanish | LILACS | ID: lil-619375

ABSTRACT

A pesar de la relativa alta prevalencia de la paracoccidioidomicosis como forma sistémica en América Latina, la forma aislada, en especial la que afecta las glándulas suprarrenales, es infrecuente, con sólo dos casos reportados. En este artículo se presenta el caso de un hombre de 65 años de edad con manifestación clínica de insuficiencia adrenal, cuyo hallazgo por imágenes mostró una masa suprarrenal bilateral. La biopsia evidención, por otro lado, una afectación por Paracoccidioides brasiliensis.


Subject(s)
Adrenal Glands , Adrenal Insufficiency , Paracoccidioidomycosis , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...