Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr C ; 57(Pt 9): 1079-80, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11588377

ABSTRACT

The preparation and crystal structure of the title compound, C(20)H(25)NO(2), are described. The N atom substituent of the nitrone function adopts a conformation which minimizes the 1,3-allylic strain.

2.
J Am Chem Soc ; 123(33): 8053-66, 2001 Aug 22.
Article in English | MEDLINE | ID: mdl-11506562

ABSTRACT

New dissymmetric tertiary amines (N(3)SR) with varying N/S donor sets have been synthesized to provide mono- and dinuclear complexes. Acetate ions are used to complete the octahedral coordination sphere around nickel(II) atom(s). The facile conversion of mononuclear to dinuclear systems can be controlled to produce either mono- or dinuclear complexes from the same ligand. The dinuclear complex a(BPh(4))(2) ([Ni(2)(N(3)SSN(3))(OAc)(2)](BPh(4))(2)) has been characterized in the solid state by X-ray diffraction techniques as solvate: a(BPh(4))(2).(1/2)[5(CH(3)OH).(CH(3)CN).(CH(3)CH(2)OH)]. The two Ni atoms are six-coordinated and bridged by a disulfide group and two bidentate acetates. Magnetic susceptibility reveals a weak ferromagnetic exchange interaction between the two Ni atoms with J = 2.5(7) cm(-1). UV-vis studies suggest that the six-coordinated structure persists in solution. The (1)H NMR spectrum of a(BPh(4))(2) exhibits sharp significantly hyperfine shifted ligand signals. A complete assignment of resonances is accomplished by a combination of methods: 2D-COSY experiments, selective chemical substitution, and analysis of proton relaxation data. Proton isotropic hyperfine shifts are shown to originate mainly from contact interactions and to intrinsically contain a small J-magnetic coupling and/or zero-field splitting contribution. A temperature dependence study of longitudinal relaxation times indicates that a very unusual paramagnetic Curie dipolar mechanism is the dominant relaxation pathway in these weakly ferromagnetically spin-coupled dinickel(II) centers. The mononuclear nickel(II) analogue exhibits extremely broader (1)H NMR signals and only partial analysis could be performed. These data are consistent with a shortening of electronic relaxation times in homodinuclear compounds with respect to the corresponding mononuclear species.


Subject(s)
Amines/chemical synthesis , Nickel/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Algorithms , Amines/chemistry , Catalysis , Chemical Phenomena , Chemistry, Physical , Crystallography, X-Ray , Fourier Analysis , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Structure , Pyridines/chemistry , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...