Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Chemistry ; 28(32): e202200470, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35348257

ABSTRACT

We herein report a novel method for the coupling of unactivated alkynes and arylallenes, which relies on an unprecedented and regioselective 1,2-carboboration of the allene by an alkenylborane. The alkenylborane is conveniently prepared in situ by hydroboration of an alkyne with Piers' borane, i. e., HB(C6 F5 )2 . The boryl-substituted 1,4-dienes that are formed by this carboboration are well-suited for a subsequent Suzuki-Miyaura coupling with aryl iodides. This allowed us to develop a three-step, one-pot protocol for the synthesis of aryl-substituted 1,4-dienes. The generality of the reaction was demonstrated by the synthesis of twenty dienes with modular variations of all three reaction partners. The mechanism of the new 1,2-carboboration was investigated using dispersion corrected double-hybrid DFT computations that allowed us to rationalize the chemo- and regioselectivity of this key step.


Subject(s)
Boranes , Alkynes , Iodides , Molecular Structure , Polyenes
2.
Chemistry ; 28(9): e202104254, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-34882876

ABSTRACT

We herein report that the reaction of Piers' borane, i. e. HB(C6 F5 )2 , with an excess of arylacetylenes at room temperature leads to tetramerization of the acetylene and the diastereoselective formation of boryl-substituted tetra-aryl-tetrahydropentalenes. The reaction mechanism was investigated by isotope labeling experiments and DFT computations. These investigations indicate that a series of 1,2-carboboration reactions form an octatetraene that undergoes an electrocyclization. Two skeletal rearrangements then presumably lead to the formation of the tetrahydropentalene core. Overall, this intricate and unprecedented transformation comprises five carbon-carbon bond formations in a single reaction.

3.
Chem Commun (Camb) ; 57(45): 5518-5521, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-33955432

ABSTRACT

We herein report the reaction of arylallenes with tris(pentafluorophenyl)borane that yields pentafluorophenyl substituted indenes. The tris(pentafluorophenyl)borane induces the cyclization of the allene and transfers a pentafluorophenyl ring in the course of this reaction. A Hammett plot analysis and DFT computations indicate a 1,1-carboboration to be the C-C bond-forming step.

4.
Angew Chem Int Ed Engl ; 59(52): 23885-23891, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-32926511

ABSTRACT

Here we report the in situ generation of nucleophilic allylboranes from H2 and allenes mediated by a pyridonate borane that displays frustrated-Lewis-pair reactivity. Experimental and computational mechanistic investigations reveal that upon H2 activation, the covalently bound pyridonate substituent becomes a datively bound pyridone ligand. Dissociation of the formed pyridone borane complex liberates Piers borane and enables a hydroboration of the allene. The allylboranes generated in this way are reactive towards nitriles. A catalytic protocol for the formation of allylboranes from H2 and allenes and the allylation of nitriles has been devised. This catalytic reaction is a conceptually new way to use molecular H2 in organic synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...