Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 95: 174-81, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24095615

ABSTRACT

Selenium (Se) chemistry can be very complex in the natural environment, exhibiting different valence states (-2, 0, +4, +6) representing multiple inorganic, methylated, or complexed forms. Since redox associated shifts among most of known Se species can occur at environmentally relevant conditions, it is important to identify these species in order to assess their potential toxicity to organisms. In June of 2009, researchers from the US Army Engineer Research & Development Center (ERDC) conducted investigations of the fly ash spilled 6 months previously into the Emory River at the TVA Kingston Fossil Plant, TN. Ash samples were collected on site from both the original ash pile (that did not move during the levee failure), from the spill zone (including the Emory River), and from the ash recovery ditch (ARD) containing ash removed during dredging cleanup operations. The purpose of this work was to determine the state of Se in the spilled fly ash and to assess its potential for transformation and resultant chemical stability from its prolonged submersion in the river and subsequent dredging. Sequential chemical extractions suggested that the river environment shifted Se distribution toward organic/sulfide species. Speciation studies by bulk XANES analysis on fly ash samples showed that a substantial portion of the Se in the original ash pile had transformed from inorganic selenite to a mixture of Se sulfide and reduced (organo)selenium (Se(-II)) species over the 6-month period. µ-XRF mapping data showed that significant trends in the co-location of Se domains with sulfur and ash heavy metals. Ten-d extended elutriate tests (EETs) that were bubbled continuously with atmospheric air to simulate worst-case oxidizing conditions during dredging showed no discernible change in the speciation of fly ash selenium. The enhanced stability of the organo- and sulfide-selenium species coincided with the mixture of the ash material with humic materials in the river, corresponding with notable shifts in the ash carbon- and nitrogen-functionality.


Subject(s)
Coal Ash/chemistry , Models, Chemical , Rivers/chemistry , Selenium/chemistry , Water Pollutants, Chemical/chemistry , Metals, Heavy/analysis , Selenium/analysis , Water Pollutants, Chemical/analysis
2.
Environ Toxicol Chem ; 32(4): 822-30, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23354755

ABSTRACT

On December 22, 2008, failure of an earthen containment structure resulted in the release of approximately 4.1 million m(3) of coal fly ash into the Emory River and the surrounding area from the Tennessee Valley Authority Kingston Fossil Plant near Kingston, Tennessee, USA. The purpose of the present study was to assess the potential of dredging activities performed to remove the fly ash from the river to result in increased risk to pelagic fish, with special consideration of mobilization of metals. Elutriates were created using two sources of fly ash by bubbling with air over 10 d. This elutriate preparation method was designed to represent worst-case conditions for oxidation, metal release, and dissolution. Larval and juvenile Pimephales promelas underwent 10-d exposures to these elutriates. Larval end points included survival and biomass, and juvenile end points included survival, length, biomass, liver somatic index, and bioaccumulation. No significant toxicity was observed. Bioaccumulation of metals in juveniles was found to be primarily attributable to metals associated with particles in the gut. Results suggest little potential for toxicity to related fish species due to fly ash removal dredging activities given the extreme conditions represented by the elutriates in the present study.


Subject(s)
Coal Ash/analysis , Environmental Exposure/analysis , Environmental Restoration and Remediation/methods , Fishes/physiology , Metals/analysis , Water Pollutants, Chemical/analysis , Animals , Environment , Environmental Exposure/statistics & numerical data , Metals/toxicity , Rivers/chemistry , Tennessee , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...