Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 108(9): 1646-1661, 2021 09.
Article in English | MEDLINE | ID: mdl-34582570

ABSTRACT

PREMISE: Understanding how drought and biomass allocation patterns influence competitive ability can help identify traits related to invasiveness and guide management. Vincetoxicum nigrum and V. rossicum are increasingly problematic herbaceous perennial vines in the northeastern United States and southeastern Canada. METHODS: Using a greenhouse experiment, we investigated how biomass allocation and competition intensity of Vincetoxicum spp. responded to four competitive regimes at two levels of soil water availability in the presence of conspecific or congeneric neighbors. RESULTS: Soil moisture was the most important influence on growth and biomass allocation. Vincetoxicum nigrum had a greater capacity for growth and reproduction than V. rossicum, especially under drought. Drought reduced the probability of reproduction for V. rossicum. Vincetoxicum rossicum had a higher root-to-shoot ratio than V. nigrum under adequate soil moisture. This difference more than doubled under drought. Under interspecific competition, V. nigrum maximized its biomass, while V. rossicum limited aboveground growth and reproduction. Root-only competition increased shoot and root biomass relative to shoot-only competition. The effects of root and shoot competition were additive under interspecific competition, but interacted under intraspecific competition (negative interaction under drought and positive interaction under sufficient soil moisture). CONCLUSIONS: Management strategies targeting mixed populations of V. rossicum and V. nigrum are most important under ample water availability. Under drought conditions, strategies focused on V. nigrum should effectively limit Vincetoxicum growth and seed reproduction. Phenotypic plasticity and the positive competition intensity associated with drought in monocultures may contribute to drought resistance in these invasive species.


Subject(s)
Vincetoxicum , Biomass , Droughts , Introduced Species , Soil
2.
AoB Plants ; 10(1): plx047, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29340133

ABSTRACT

Herbivores can profoundly influence plant species assembly, including plant invasion, and resulting community composition. Population increases of native herbivores, e.g. white-tailed deer (Odocoileus virginianus), combined with burgeoning plant invasions raise concerns for native plant diversity and forest regeneration. While individual researchers typically test for the impact of deer on plant invasion at a few sites, the overarching influence of deer on plant invasion across regional scales is unclear. We tested the effects of deer on the abundance and diversity of introduced and native herbaceous and woody plants across 23 white-tailed deer research sites distributed across the east-central and north-eastern USA and representing a wide range of deer densities and invasive plant abundance and identity. Deer access/exclusion or deer population density did not affect introduced plant richness or community-level abundance. Native and total plant species richness, abundance (cover and stem density) and Shannon diversity were lower in deer-access vs. deer-exclusion plots. Among deer-access plots, native species richness, native and total cover, and Shannon diversity (cover) declined as deer density increased. Deer access increased the proportion of introduced species cover (but not of species richness or stem density). As deer density increased, the proportion of introduced species richness, cover and stem density all increased. Because absolute abundance of introduced plants was unaffected by deer, the increase in proportion of introduced plant abundance is likely an indirect effect of deer reducing native cover. Indicator species analysis revealed that deer access favoured three introduced plant species, including Alliaria petiolata and Microstegium vimineum, as well as four native plant species. In contrast, deer exclusion favoured three introduced plant species, including Lonicera japonica and Rosa multiflora, and 15 native plant species. Overall, native deer reduced community diversity, lowering native plant richness and abundance, and benefited certain invasive plants, suggesting pervasive impacts of this keystone herbivore on plant community composition and ecosystem services in native forests across broad swathes of the eastern USA.

3.
J Environ Manage ; 202(Pt 1): 208-216, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28735205

ABSTRACT

Vegetation removal and soil disturbance from natural resource development, combined with invasive plant propagule pressure, can increase vulnerability to plant invasions. Unconventional oil and gas development produces surface disturbance by way of well pad, road, and pipeline construction, and increased traffic. Little is known about the resulting impacts on plant community assembly, including the spread of invasive plants. Our work was conducted in Pennsylvania forests that overlay the Marcellus and Utica shale formations to determine if invasive plants have spread to edge habitat created by unconventional gas development and to investigate factors associated with their presence. A piecewise structural equation model was used to determine the direct and indirect factors associated with invasive plant establishment on well pads. The model included the following measured or calculated variables: current propagule pressure on local access roads, the spatial extent of the pre-development road network (potential source of invasive propagules), the number of wells per pad (indicator of traffic density), and pad age. Sixty-one percent of the 127 well pads surveyed had at least one invasive plant species present. Invasive plant presence on well pads was positively correlated with local propagule pressure on access roads and indirectly with road density pre-development, the number of wells, and age of the well pad. The vast reserves of unconventional oil and gas are in the early stages of development in the US. Continued development of this underground resource must be paired with careful monitoring and management of surface ecological impacts, including the spread of invasive plants. Prioritizing invasive plant monitoring in unconventional oil and gas development areas with existing roads and multi-well pads could improve early detection and control of invasive plants.


Subject(s)
Introduced Species , Plants , Ecosystem , Natural Gas , Pennsylvania , Soil
4.
Am J Bot ; 97(2): 251-60, 2010 Feb.
Article in English | MEDLINE | ID: mdl-21622385

ABSTRACT

Determining which traits may allow some introduced plant species to become invasive in their new environment continues to be a key question in invasion biology. Vincetoxicum rossicum is an invasive, perennial vine colonizing natural and seminatural habitats primarily in the northeastern United States and southeastern Canada. More than half its seeds exhibit polyembryony, a relatively uncommon condition in which a single seed produces multiple seedlings. For evaluating the potential consequences of polyembryony on invasiveness, V. rossicum plants derived from seeds of three embryonic classes-singlets, doublets, and triplets (one, two, and three seedlings per seed, respectively)-were paired in all combinations intraspecifically and with the co-occurring native herbs Solidago canadensis and Asclepias syriaca in a greenhouse study. Vincetoxicum rossicum biomass was 25-55% greater and follicle production 55-100% greater under intraspecific competition compared with interspecific competition. However, within a competitive environment, follicle production varied little. Regardless of competitive environment, V. rossicum originating from seeds with a greater number of embryos typically performed no better than plants arising from seed with fewer embryos (singlets = doublets = triplets)-except intraspecifically where doublets outperformed singlets, and with S. canadensis where triplets outperformed singlets. Our findings suggest that overall performance and fitness of V. rossicum is higher in monocultures than in mixed stands and that its ability to invade new habitats may not be attributable to the production of polyembryonic seeds.

SELECTION OF CITATIONS
SEARCH DETAIL
...