Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
A A Pract ; 15(10): e01539, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34695041

ABSTRACT

Giant axonal neuropathy (GAN) is a rare autosomal recessive neurodegenerative disorder caused by mutations in the GAN gene, which encodes for gigaxonin, a protein involved in intermediate filament processing in neural cells and fibroblasts. We report on 14 GAN patients who underwent 77 anesthetics during the conduct of an intrathecal gene transfer clinical trial from April 2015 to August 2020. We observed only a few nonsignificant perianesthetic complications. Our data expand the knowledge regarding safety of anesthesia for patients with this rare and potentially fatal disease and highlights the tolerability of shorter procedural sedation and anesthesia.


Subject(s)
Anesthetics , Giant Axonal Neuropathy , Adolescent , Child , Cytoskeletal Proteins/genetics , Fibroblasts , Humans , Mutation
2.
Genet Med ; 23(11): 2057-2066, 2021 11.
Article in English | MEDLINE | ID: mdl-34234300

ABSTRACT

After decades of setbacks, gene therapy (GT) is experiencing major breakthroughs. Five GTs have received US regulatory approval since 2017, and over 900 others are currently in development. Many of these GTs target rare pediatric diseases that are severely life-limiting, given a lack of effective treatments. As these GTs enter early-phase clinical trials, specific ethical challenges remain unresolved in three domains: evaluating risks and potential benefits, selecting participants fairly, and engaging with patient communities. Drawing on our experience as clinical investigators, basic scientists, and bioethicists involved in a first-in-human GT trial for an ultrarare pediatric disease, we analyze these ethical challenges and offer points to consider for future GT trials.


Subject(s)
Clinical Trials as Topic/ethics , Genetic Therapy , Child , Genetic Therapy/ethics , Humans , Treatment Outcome
3.
Brain ; 144(10): 3239-3250, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34114613

ABSTRACT

Giant axonal neuropathy (GAN) is an ultra-rare autosomal recessive, progressive neurodegenerative disease with early childhood onset that presents as a prominent sensorimotor neuropathy and commonly progresses to affect both the PNS and CNS. The disease is caused by biallelic mutations in the GAN gene located on 16q23.2, leading to loss of functional gigaxonin, a substrate specific ubiquitin ligase adapter protein necessary for the regulation of intermediate filament turnover. Here, we report on cross-sectional data from the first study visit of a prospectively collected natural history study of 45 individuals, age range 3-21 years with genetically confirmed GAN to describe and cross-correlate baseline clinical and functional cohort characteristics. We review causative variants distributed throughout the GAN gene in this cohort and identify a recurrent founder mutation in individuals with GAN of Mexican descent as well as cases of recurrent uniparental isodisomy. Through cross-correlational analysis of measures of strength, motor function and electrophysiological markers of disease severity, we identified the Motor Function Measure 32 to have the strongest correlation across measures and age in individuals with GAN. We analysed the Motor Function Measure 32 scores as they correspond to age and ambulatory status. Importantly, we identified and characterized a subcohort of individuals with a milder form of GAN and with a presentation similar to Charcot-Marie-Tooth disease. Such a clinical presentation is distinct from the classic presentation of GAN, and we demonstrate how the two groups diverge in performance on the Motor Function Measure 32 and other functional motor scales. We further present data on the first systematic clinical analysis of autonomic impairment in GAN as performed on a subset of the natural history cohort. Our cohort of individuals with genetically confirmed GAN is the largest reported to date and highlights the clinical heterogeneity and the unique phenotypic and functional characteristics of GAN in relation to disease state. The present work is designed to serve as a foundation for a prospective natural history study and functions in concert with the ongoing gene therapy trial for children with GAN.


Subject(s)
Giant Axonal Neuropathy/diagnostic imaging , Giant Axonal Neuropathy/physiopathology , Adolescent , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Female , Giant Axonal Neuropathy/genetics , Humans , Male , Young Adult
4.
Neurology ; 93(21): e1932-e1943, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31653707

ABSTRACT

OBJECTIVE: To identify the rate of change of clinical outcome measures in children with 2 types of congenital muscular dystrophy (CMD), COL6-related dystrophies (COL6-RDs) and LAMA2-related dystrophies (LAMA2-RDs). METHODS: Over the course of 4 years, 47 individuals (23 with COL6-RD and 24 with LAMA2-RD) 4 to 22 years of age were evaluated. Assessments included the Motor Function Measure 32 (MFM32), myometry (knee flexors and extensors, elbow flexors and extensors), goniometry (knee and elbow extension), pulmonary function tests, and quality-of-life measures. Separate linear mixed-effects models were fitted for each outcome measurement, with subject-specific random intercepts. RESULTS: Total MFM32 scores for COL6-RDs and LAMA2-RDs decreased at a rate of 4.01 and 2.60 points, respectively, each year (p < 0.01). All muscle groups except elbow flexors for individuals with COL6-RDs decreased in strength between 1.70% (p < 0.05) and 2.55% (p < 0.01). Range-of-motion measurements decreased by 3.21° (p < 0.05) at the left elbow each year in individuals with LAMA2-RDs and 2.35° (p < 0.01) in right knee extension each year in individuals with COL6-RDs. Pulmonary function demonstrated a yearly decline in sitting forced vital capacity percent predicted of 3.03% (p < 0.01) in individuals with COL6-RDs. There was no significant change in quality-of-life measures analyzed. CONCLUSION: Results of this study describe the rate of change of motor function as measured by the MFM32, muscle strength, range of motion, and pulmonary function in individuals with COL6-RDs and LAMA2-RDs.


Subject(s)
Muscular Dystrophies/physiopathology , Sclerosis/physiopathology , Adolescent , Arthrometry, Articular , Child , Child, Preschool , Disease Progression , Enteral Nutrition , Female , Humans , Linear Models , Longitudinal Studies , Male , Mobility Limitation , Muscle Strength , Muscle Strength Dynamometer , Outcome Assessment, Health Care , Quality of Life , Respiratory Function Tests , Vital Capacity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...