Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 935: 173262, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38768719

ABSTRACT

Growing concerns about pesticide residues in agriculture are pushing the scientific community to develop innovative and efficient methods for detecting these substances at low concentrations down to the molecular level. In this context, surface-enhanced Raman spectroscopy (SERS) is a powerful analytical method that has so far already undergone some validation for its effectiveness in pesticide detection. However, despite its great potential, SERS faces significant difficulties obtaining reproducible and accurate pesticide spectra, particularly for some of the most widely used pesticides, such as malathion, chlorpyrifos, and imidacloprid. Those inconsistencies can be attributed to several factors, such as interactions between pesticides and SERS substrates and the variety of substrates and solvents used. In addition, differences in the equipment used to obtain SERS spectra and the lack of standards for control experiments further complicate the reproducibility and reliability of SERS data. This review systematically discusses the problems mentioned above, including a comprehensive analysis of the challenges in precisely evaluating SERS spectra for pesticide detection. We not only point out the existing limitations of the method, which can be traced in previous review works, but also offer practical recommendations to improve the quality and comparability of SERS spectra, thereby expanding the potential applications of the method in such an essential field as pesticide detection.

2.
Polymers (Basel) ; 15(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38139874

ABSTRACT

Flexible electronics have sparked significant interest in the development of electrically conductive polymer-based composite materials. While efforts are being made to fabricate these composites through laser integration techniques, a versatile methodology applicable to a broad range of thermoplastic polymers remains elusive. Moreover, the underlying mechanisms driving the formation of such composites are not thoroughly understood. Addressing this knowledge gap, our research focuses on the core processes determining the integration of reduced graphene oxide (rGO) with polymers to engineer coatings that are not only flexible and robust but also exhibit electrical conductivity. Notably, we have identified a particular range of laser power densities (between 0.8 and 1.83 kW/cm2), which enables obtaining graphene polymer composite coatings for a large set of thermoplastic polymers. These laser parameters are primarily defined by the thermal properties of the polymers as confirmed by thermal analysis as well as numerical simulations. Scanning electron microscopy with elemental analysis and X-ray photoelectron spectroscopy showed that conductivity can be achieved by two mechanisms-rGO integration and polymer carbonization. Additionally, high-speed videos allowed us to capture the graphene oxide (GO) modification and melt pool formation during laser processing. The cross-sectional analysis of the laser-processed samples showed that the convective flows are present in the polymer substrate explaining the observed behavior. Moreover, the practical application of our research is exemplified through the successful assembly of a conductive wristband for wearable devices. Our study not only fills a critical knowledge gap but also offers a tangible illustration of the potential impact of laser-induced rGO-polymer integration in materials science and engineering applications.

3.
Nanomaterials (Basel) ; 13(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903801

ABSTRACT

Structural electronics, as well as flexible and wearable devices are applications that are possible by merging polymers with metal nanoparticles. However, using conventional technologies, it is challenging to fabricate plasmonic structures that remain flexible. We developed three-dimensional (3D) plasmonic nanostructures/polymer sensors via single-step laser processing and further functionalization with 4-nitrobenzenethiol (4-NBT) as a molecular probe. These sensors allow ultrasensitive detection with surface-enhanced Raman spectroscopy (SERS). We tracked the 4-NBT plasmonic enhancement and changes in its vibrational spectrum under the chemical environment perturbations. As a model system, we investigated the sensor's performance when exposed to prostate cancer cells' media over 7 days showing the possibility of identifying the cell death reflected in the environment through the effects on the 4-NBT probe. Thus, the fabricated sensor could have an impact on the monitoring of the cancer treatment process. Moreover, the laser-driven nanoparticles/polymer intermixing resulted in a free-form electrically conductive composite that withstands over 1000 bending cycles without losing electrical properties. Our results bridge the gap between plasmonic sensing with SERS and flexible electronics in a scalable, energy-efficient, inexpensive, and environmentally friendly way.

4.
Adv Mater ; 34(43): e2206877, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36038983

ABSTRACT

Glass electronics inspire the emergence of smart functional surfaces. To evolve this concept to the next level, developing new strategies for scalable, inexpensive, and electrically conductive glass-based robust nanocomposites is crucial. Graphene is an attractive material as a conductive filler; however, integrating it firmly into a glass with no energy-intensive sintering, melting, or harsh chemicals has not been possible until now. Moreover, these methods have very limited capability for fabricating robust patterns for electronic circuits. In this work, a conductive (160 OΩ sq-1 ) and resilient nanocomposite between glass and graphene is achieved via single-step laser-induced backward transfer (LIBT). Beyond conventional LIBT involving mass transfer, this approach simultaneously drives chemical transformations in glass including silicon compound formation and graphene oxide (GO) reduction. These processes take place together with the generation and transfer of the highest-quality laser-reduced GO (rGO) reported to date (Raman intensity ratio ID /IG  = 0.31) and its integration into the glass. The rGO-LIBT nanocomposite is further functionalized with silver to achieve a highly sensitive (10-9  m) dual-channel plasmonic optical and electrochemical sensor. Besides the electrical circuit demonstration, an electrothermal heater is fabricated that reaches temperatures above 300 °C and continuously operates for over 48 h.

5.
Crit Rev Anal Chem ; : 1-25, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35435777

ABSTRACT

One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.

SELECTION OF CITATIONS
SEARCH DETAIL
...