Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Brain Dis ; 38(1): 269-286, 2023 01.
Article in English | MEDLINE | ID: mdl-36271967

ABSTRACT

A high-fructose diet causes metabolic abnormalities in rats, and the cluster of complications points to microvascular and neuronal disorders of the brain. The aim of this study was to evaluate i) the involvement of microvascular disorders and neuronal plasticity in the deleterious effects of a high-fructose diet on the rat brain and ii) a comparative assessment of the effectiveness of Phytocollection therapy (with antidiabetic, antioxidant, and acetylcholinesterase inhibitory activities) compared to Galantamine as first-line therapy for dementia and Diabeton as first-line therapy for hyperglycemia. The calcium adenosine triphosphate non-injection histoangiological method was used to assess capillary network diameter and density. A high-fructose diet resulted in a significant decrease in the diameter and density of the capillary bed, and pharmacological manipulations had a modulatory effect on microcirculatory adaptive mechanisms. In vivo single-unit extracellular recording was used to investigate short-term plasticity in the medial prefrontal cortex. Differences in the parameters of spike background activity and expression of excitatory and inhibitory responses of cortical neurons have been discovered, allowing for flexibility and neuronal function stabilization in pathology and pharmacological prevention. Integration of the coupling mechanism between microvascular function and neuronal spike activity could delay the progressive decline in cognitive function in rats fed a high fructose diet.


Subject(s)
Acetylcholinesterase , Fructose , Rats , Animals , Fructose/pharmacology , Fructose/metabolism , Microcirculation , Acetylcholinesterase/metabolism , Brain/metabolism , Diet , Neurons/metabolism
2.
BMC Complement Altern Med ; 17(1): 540, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258552

ABSTRACT

BACKGROUND: Excess dietary fructose intake associated with metabolic syndrome and insulin resistance and increased risk of developing type 2 diabetes. Previous animal studies have reported that diabetic animals have significantly impaired behavioural and cognitive functions, pathological synaptic function and impaired expression of glutamate receptors. Correction of the antioxidant status of laboratory rodents largely prevents the development of fructose-induced plurimetabolic changes in the nervous system. We suggest a novel concept of efficiency of Stevia leaves for treatment of central diabetic neuropathy. METHODS: By in vivo extracellular studies induced spike activity of hippocampal neurons during high frequency stimulation of entorhinal cortex, as well as neurons of basolateral amygdala to high-frequency stimulation of the hippocampus effects of Stevia rebaudiana Bertoni plant evaluated in synaptic activity in the brain of fructose-enriched diet rats. In the conditions of metabolic disorders caused by fructose, antioxidant activity of Stevia rebaudiana was assessed by measuring the NOX activity of the hippocampus, amygdala and spinal cord. RESULTS: In this study, the characteristic features of the metabolic effects of dietary fructose on synaptic plasticity in hippocampal neurons and basolateral amygdala and the state of the NADPH oxidase (NOX) oxidative system of these brain formations are revealed, as well as the prospects for development of multitarget and polyfunctional phytopreparations (with adaptogenic, antioxidant, antidiabetic, nootropic activity) from native raw material of Stevia rebaudiana. Stevia modulates degree of expressiveness of potentiation/depression (approaches but fails to achieve the norm) by shifting the percentage balance in favor of depressor type of responses during high-frequency stimulation, indicating its adaptogenic role in plasticity of neural networks. Under the action of fructose an increase (3-5 times) in specific quantity of total fraction of NOX isoforms isolated from the central nervous system tissue (amygdala, hippocampus, spinal cord) was revealed. Stevia exhibits an antistress, membrane-stabilizing role reducing the level of total fractions of NOX isoforms from central nervous system tissues and regulates NADPH-dependent O2- -producing activity. CONCLUSION: Generally, in condition of metabolic disorders caused by intensive consumption of dietary fructose Stevia leaves contributes to the control of neuronal synaptic plasticity possibly influencing the conjugated NOX-specific targets.


Subject(s)
Brain Chemistry/drug effects , Brain/drug effects , Diterpenes, Kaurane/pharmacology , Fructose/adverse effects , Glucosides/pharmacology , NADPH Oxidases/analysis , Neuronal Plasticity/drug effects , Action Potentials/drug effects , Animals , Brain/cytology , Brain/enzymology , Dietary Sugars/adverse effects , Male , Metabolic Diseases/chemically induced , Metabolic Diseases/metabolism , NADPH Oxidases/metabolism , Rats , Stevia
3.
Pathophysiology ; 23(3): 169-79, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27424529

ABSTRACT

Excess fructose consumption causes changes in functioning of the central and peripheral nervous systems, which increase the vulnerability of peripheral nerves to traumatic injury. The aim of this study was to evaluate the electrophysiological parameters of responses of motoneurons of the spinal cord at high-frequency stimulation of the distal part of the injured sciatic nerve in a model of diabetic stress under action of Lycium barbarum (LB). Male albino rats were given with drinking water with 50% concentration of dietary fructose for 6 weeks. Starting on the 7th week a crush injury of the left sciatic nerve was carried out. Some of the animals received fructose post-injury for 3 weeks and some of the animals received fructose+dry LB fruits for 3 weeks. In the fructose+crush+LВ group a relatively proportional division of tetanic and posttetanic potentiation and depression in responses of ipsilateral and contralateral motoneurons was observed, which would suggest the modulatory role of LB in short-term synaptic plasticity formation. Generally, LB fruit is able to modulate central nervous system reorganization, amplifying positive adaptive changes that improve functional recovery and promote selective target reinnervation in high fructose-diet rats with sciatic nerve crush-injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...