Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 659: 1555-1566, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31096365

ABSTRACT

Prescribed grassland fires in the Flint Hills region of central Kansas and northern Oklahoma are a common tool for land management. Local to regional scale impacts on air quality from grassland fires in this region are not well understood, which is important as these types of prescribed fires may increase in the future to preserve broader areas of native grasses in the central U.S. Routine air quality and deposition measurements from sites in and near the Flint Hills were examined for coincident increases during periods of increased prescribed grassland fires. Prescribed fire activity in this region was quantified using satellite detections and multiple publicly available data products of area burned information. March and April comprise over half (41 to 93%) of all annual fire detections in the Flint Hills region seen from satellites between 2007 and 2018 excluding drought years. Annual total fire detections in this region range between 1 and 12 thousand and account for approximately 3% of all fire detections in the contiguous U.S. Annual acres burned ranged from 0.2 to 2 million acres based on U.S. EPA's National Emission Inventory, which accounts for 4 to 38% of grasslands in the area. A comparison of weekly standardized anomalies suggests a relationship between periods of increased grassland fire activity and elevated levels of PM2.5 organic carbon, elemental carbon, and potassium. Daily 1-hr maximum ozone (O3), ammonia (NH3), sulfur dioxide (SO2), and oxidized nitrogen gases measured at Konza Prairie also had increased levels when prescribed grassland fire activity was highest. This detailed characterization of prescribed fire activity in the Flint Hills and associated air quality impacts will benefit future efforts to understand changes in atmospheric composition due to changing land management practices.

2.
J Pharmacol Exp Ther ; 261(1): 364-72, 1992 Apr.
Article in English | MEDLINE | ID: mdl-1560380

ABSTRACT

Naphthalene, a murine Clara cell cytotoxicant, is metabolized by cytochrome P450 monooxygenases to unstable, chiral epoxide metabolites which can conjugate with glutathione in the presence of glutathione transferases. Analysis of the three diasteriomeric glutathione adducts produced from conjugation of naphthalene oxides was used in these studies to characterize the stereochemistry of naphthalene epoxidation in preparations of nasal mucosa, lung and liver of the mouse, rat, hamster and monkey. The highest rates of naphthalene metabolism were observed in mouse lung and liver microsomal incubations. Rat, hamster and monkey lung microsomal preparations metabolized naphthalene at 12, 37, and 1%, respectively, of the rate observed in mouse lung. The ratio of chiral epoxides produced in microsomal incubations was dependent upon the concentration of naphthalene. At high substrate concentrations (0.25-1.0 mM), the ratio of 1R,2S- to 1S,2R-naphthalene oxide, as assessed by the glutathione adducts generated (adduct 2/adducts 1 + 3), in murine lung microsomal incubations was 10:1 and at low concentrations (0.062 mM and below) varied from 13.8:1 to 30:1. In contrast, the ratio of 1R,2S- to 1S,2R-naphthalene oxide produced in murine liver microsomes varied from 1:1 at high substrate concentrations to 5:1 at low substrate concentrations. The ratio of naphthalene oxides was unaffected by the concentration of glutathione in the incubation. In contrast to the preferential formation of 1R,2S-naphthalene oxide observed in mouse lung microsomal preparations, lung microsomes derived from the rat, hamster and monkey yielded 1R,2S- to 1S,2R-epoxide ratios of 0.48, 0.61 and 0.12, respectively, at 0.5 mM naphthalene.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Lung/metabolism , Microsomes, Liver/metabolism , Naphthalenes/metabolism , Nasal Mucosa/metabolism , Animals , Cricetinae , Female , Lung/drug effects , Macaca mulatta , Male , Mesocricetus , Mice , Microsomes, Liver/drug effects , Naphthalenes/toxicity , Nasal Mucosa/drug effects , Rats , Rats, Inbred Strains , Species Specificity , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...