Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20232009

ABSTRACT

Quantitatively describing the time course of the SARS-CoV-2 infection within an infected individual is important for understanding the current global pandemic and possible ways to combat it. Here we integrate the best current knowledge about the typical viral load of SARS-CoV-2 in bodily fluids and host tissues to estimate the total number and mass of SARS-CoV-2 virions in an infected person. We estimate that each infected person carries 109-1011 virions during peak infection, with a total mass in the range of 1-100 g, which curiously implies that all SARS-CoV-2 virions currently circulating within human hosts have a collective mass of only 0.1-10 kg. We combine our estimates with the available literature on host immune response and viral mutation rates to demonstrate how antibodies markedly outnumber the spike proteins and the genetic diversity of virions in an infected host covers all possible single nucleotide substitutions. SignificanceKnowing the absolute numbers of virions in an infection promotes better understanding of the disease dynamics and the response of the immune system. Here we use the best current knowledge on the concentrations of virions in infected individuals to estimate the total number and mass of SARS-CoV-2 virions in an infected person. Although each infected person carries an estimated 1-100 billion virions during peak infection, their total mass is no more than 0.1 mg. This curiously implies that all SARS-CoV-2 virions currently in all human hosts have a mass of between 100 gram and 10 kilogram. Combining the known mutation rate and our estimate of the number of infectious virions we quantify the formation rate of genetic variants.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20193805

ABSTRACT

Viral genome sequencing has guided our understanding of the spread and extent of genetic diversity of SARS-CoV-2 during the COVID-19 pandemic. SARS-CoV-2 viral genomes are usually sequenced from nasopharyngeal swabs of individual patients to track viral spread. Recently, RT-qPCR of municipal wastewater has been used to quantify the abundance of SARS-CoV-2 in several regions globally. However, metatranscriptomic sequencing of wastewater can be used to profile the viral genetic diversity across infected communities. Here, we sequenced RNA directly from sewage collected by municipal utility districts in the San Francisco Bay Area to generate complete and near-complete SARS-CoV-2 genomes. The major consensus SARS-CoV-2 genotypes detected in the sewage were identical to clinical genomes from the region. Using a pipeline for single nucleotide variant (SNV) calling in a metagenomic context, we characterized minor SARS-CoV-2 alleles in the wastewater and detected viral genotypes which were also found within clinical genomes throughout California. Observed wastewater variants were more similar to local California patient-derived genotypes than they were to those from other regions within the US or globally. Additional variants detected in wastewater have only been identified in genomes from patients sampled outside of CA, indicating that wastewater sequencing can provide evidence for recent introductions of viral lineages before they are detected by local clinical sequencing. These results demonstrate that epidemiological surveillance through wastewater sequencing can aid in tracking exact viral strains in an epidemic context.

SELECTION OF CITATIONS
SEARCH DETAIL
...