Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 7: 100975, 2020.
Article in English | MEDLINE | ID: mdl-32670803

ABSTRACT

Generally speaking, reaction platforms involving ferromagnetic surfaces, with a specific magnetic direction, are limited to the two dimensional regime, due to the nature of the magnetic phenomena. Here we show a method for preparing partially coated ferromagnetic microparticles with a distinct magnetic pole. This simple preparation method was presented previously [ 1 ] to demonstrate an application for enantiomeric separation. In this method article we show;•A simple method to a-symmetrically manipulate particle surfaces.•A generic way to synchronize a bare pole of ferromagnetic microparticles.•A simple and generic enantiomer purification technique.

2.
J Phys Chem Lett ; 11(4): 1550-1557, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32013436

ABSTRACT

Kelvin-probe measurements on ferromagnetic thin film electrodes coated with self-assembled monolayers of chiral molecules reveal that the electron penetration from the metal electrode into the chiral molecules depends on the ferromagnet's magnetization direction and the molecules' chirality. Electrostatic potential differences as large as 100 mV are observed. These changes arise from the applied oscillating electric field, which drives spin-dependent charge penetration from the ferromagnetic substrate to the chiral molecules. The enantiospecificity of the response is studied as a function of the magnetization strength, the magnetization direction, and the handedness and length of the chiral molecules. These new phenomena are rationalized in terms of the chiral-induced spin selectivity (CISS) effect, in which one spin orientation of electrons from the ferromagnet penetrates more easily into a chiral molecule than does the other orientation. The large potential changes (>kT at room temperature) manifested here imply that this phenomenon is important for spin transport in chiral spintronic devices and for magneto-electrochemistry of chiral molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...