Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Ecol ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095554

ABSTRACT

Parasitoid biological control agents rely heavily on olfaction to locate their hosts. Chemical cues associated with hosts and non-hosts are known to influence the expression of host preferences and host-specificity. A better understanding of how and why parasitoids attack some species and not others, based on volatile organic compounds associated with potential hosts, can provide key information on the parasitoid's host preferences, which could be applied to pre-release risk assessments for classical biological control agents. Electrophysiological techniques such as electroantennography (EAG) and GC-EAD (gas chromatography coupled with electroantennographic detection) are widely used to identify bioactive semiochemicals. But the application of these techniques to understanding how chemical ecological cues mediate parasitoid host specificity has not been as thoroughly explored. We conducted GC-EAD and EAG studies to identify olfactory-active compounds associated with adult females of nine stink bug species from Aotearoa/New Zealand on the antennae of three closely related parasitoid species: Trissolcus japonicus Ashmead, a pre-emptively (= proactively) approved biocontrol agent against brown marmorated stink bug; T. basalis (Wollaston), a biocontrol agent introduced against Nezara viridula L. in 1949; and T. oenone Johnson, a native Australasian pentatomid parasitoid. Eight compounds associated with stink bugs elicited antennal responses from all three parasitoids, and we were able to identify seven of these. (E)-2-hexenal, (E)-4-oxo-2-hexenal, (E)-2-octenal and (E)-2-decenal generally elicited stronger responses in the three parasitoids, while n-tridecane, n-dodecane, and (E)-2-decenyl acetate elicited weaker responses. We discuss how and why the results from electrophysiological experiments can be applied to non-target risk assessments within biological control programmes.

3.
Front Physiol ; 14: 1102216, 2023.
Article in English | MEDLINE | ID: mdl-36935745

ABSTRACT

Introduction: The genus Trissolcus includes a number of egg parasitoids that are known to contribute to the control of Halyomorpha halys. The number of progenies, particularly females, is important for the efficient mass rearing of species used in augmentative biological control programs. Cold storage is an important technique for extending the shelf life of natural enemies used in such programs. Methods: We assessed how fecundity, sex ratio, lifespan, and the number of hosts parasitized within 24 h were affected by host density for T. japonicus and T. cultratus when offered fresh H. halys eggs and how these parameters were affected if adult parasitoids were first placed in cold storage (11°C in the dark) for 19 weeks before being used for propagation. Results: The fecundity were 110.2 and 84.2 offspring emerged at 25°C, for parasitoids not placed in cold storage; among the offspring that emerged, 82.6% and 85.6% were female for T. japonicus and T. cultratus, respectively. If first placed in cold storage, T. japonicus and T. cultratus produced 35.1 and 24.6 offspring per female, respectively, although cold storage significantly extended the shelf life. The survival rates of parasitoids that were placed in cold storage were 90.3% and 81.3% for females, and 3.2% and 0.9% for males of T. japonicus and T. cultratus, respectively. The number of hosts parasitized within 24 h was not shown to be density dependent, but it was significantly lower after cold storage. Discussion: This information can be used to estimate the likely production for augmented rearing colonies for use in biological control programs.

4.
Biology (Basel) ; 12(3)2023 03 11.
Article in English | MEDLINE | ID: mdl-36979127

ABSTRACT

Global trade facilitates the introduction of invasive species that can cause irreversible damage to agriculture and the environment, as well as stored food products. The raisin moth (Cadra figulilella) is an invasive pest that poses a significant threat to fruits and dried foods. Climate change may exacerbate this threat by expanding moth's distribution to new areas. In this study, we used CLIMEX and MaxEnt niche modeling tools to assess the potential global distribution of the raisin moth under current and future climate change scenarios. Our models projected that the area of suitable distribution for the raisin moth could increase by up to 36.37% by the end of this century under high emission scenario. We also found that excessive precipitation decreased the probability of raisin moth establishment and that the optimum temperature range for the species during the wettest quarter of the year was 0-18 °C. These findings highlight the need for future research to utilize a combined modeling approach to predict the distribution of the raisin moth under current and future climate conditions more accurately. Our results could be used for environmental risk assessments, as well as to inform international trade decisions and negotiations on phytosanitary measures with regards to this invasive species.

5.
Front Plant Sci ; 13: 923802, 2022.
Article in English | MEDLINE | ID: mdl-36186047

ABSTRACT

The generalist predatory mite Amblyseius swirskii is a widely used natural enemy of phytophagous pests. Due to the negative effects of conventional pesticides on non-target organisms, the development of selective natural and eco-friendly pesticides, such as essential plant oils, are useful pest control tools to use in synergy with biological control agents. Essential oils of Nepeta crispa, Satureja hortensis, and Anethum graveolens showed promising results to control Tetranychus urticae. Hence an experiment was carried out to evaluate the effects of these essential oils on the biochemical and demographic parameters of A. swirskii. A significant reduction of carbohydrate, lipid, and protein contents of oil-treated predatory mites was observed. However, essential oils of S. hortensis and A. graveolens had no effect on lipid reserves. The glutathione S-transferase activity of A. swirskii was influenced by A. graveolens oil treatment. In addition, the enzyme activity of the α-esterases was elevated by all treatments. The essential oils showed no effect on ß-esterases activity compared to the control treatment. None of the concentrations of the different tested oils affected the population growth parameters of A. swirskii. However, a significant reduction was observed in oviposition time and total fecundity of predatory mites. A population projection predicted the efficacy of predatory mites will likely be decreased when expose to the essential oils; however, population growth in the S. hortensis treatment was faster than in the other two treatments not including the control. The results presented in this study may have critical implications for integrated pest management (IPM) programs. However, our observations show that using the tested essential plant oils requires some caution when considered as alternatives to synthetic pesticides, and in combination with A. swirskii. Semi-field and field studies are still required to evaluate the effects on T. urticae and A. swirskii of the essential oils tested in this study, before incorporating them into IPM strategies.

6.
Insects ; 12(7)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203157

ABSTRACT

The brown marmorated stink bug Halyomorphahalys (Stål) (Hemiptera: Pentatomidae) is native to Northeast Asia, but has become a serious invasive species in North America and Europe, causing major damage to crops. While it has not established itself in Australia, it has been intercepted at the border several times, indicating that future incursions and establishment are a case of when, not if. Biological control is one of the few control options for this species and will be important for managing H.halys should it become established in Australia. Prioritizing species that could be used as biological control agents would ensure Australia is prepared. This study summarizes the literature on natural enemies of H. halys in its native and invaded ranges and prioritizes potential biological control agents of H.halys that could be used in Australia. Two egg parasitoid species were identified: Trissolcusjaponicus (Ashmead) and Trissolcusmitsukurii (Ashmead) (Hymenoptera: Scelionidae). Future efforts to develop biological control should focus on T. mitsukurii, as it is already present in Australia. However, little is known about this species and further work is required to: (1) assess its potential effectiveness in parasitizing H. halys, (2) determine its current distribution and (3) host range in Australia.

7.
Insects ; 12(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068682

ABSTRACT

To develop effective and targeted biocontrol tactics for the brown marmorated stink bug, Halyomorpha halys, in crop habitats, a good understanding is essential of the abundance and diversity of its parasitoids in different crop habitats in its native range. To obtain information on the egg parasitoid communities of H. halys in kiwifruit, surveys using sentinel egg masses were conducted in 2018 and 2019. These assessed the species composition of egg parasitoids of H. halys in green-fleshed 'Hayward' kiwifruit orchards, and quantified their season-long abundances in orchards under two different management systems. Parasitism was observed from June to August 2018 (mean parasitism: 48%) and from May to August 2019 (mean parasitism: 29%) across the experimental orchards. In total, five different parasitoid species were found across the two surveys seasons in the kiwifruit orchards, Trissolcus japonicus, T. cultratus, T. plautiae, Anastatus japonicus, and Acroclisoides sp., where T. japonicus and T. cultratus were the predominant species. Monthly T. japonicus abundance data had a unimodal distribution in 2018, peaking in July. There were two peaks (May-June and August) in the 2019 season. Overall, T. japonicus was significantly more abundant in the organic orchard than the conventionally managed orchard only in 2018, and its monthly abundance differed significantly in the two orchards in the two survey seasons. Results and their implications for future classical biological control for H. halys in kiwifruit are discussed.

8.
Insects ; 12(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070564

ABSTRACT

The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is native to northeast Asia. It was accidentally introduced to Europe and North America, where it has become a key pest, feeding on many important crops. Previous eco-climatic niche modelling indicates that H. halys could expand its distribution vastly, and numerous border interceptions of this pest in many countries, including Australia and New Zealand, indicate that it would be prudent to prepare for its eventual arrival. Similar niche modelling was used to assess the potential distribution of Trissolcus japonicus (Ashmead) (Hymenoptera: Scelionidae), the key parasitoid of H. halys in China. Trissolcus mitsukurii (Ashmead) is one of the main parasitoids of H. halys in Japan. It is known to have existed in Australia since the early 20th century and was also specifically introduced to Australia in the 1960s, and it has now also invaded Italy. We used CLIMEX to model the climatic niche of T. mitsukurii to estimate its global potential distribution. We found that T. mitsukurii should be able to significantly expand its range globally, and that there is a significant degree of overlap in the projected ranges of T. mitsukurii, T. japonicus and H. halys. From a biological control perspective, this implies that the two Trissolcus species may be able to help mitigate the potential impacts of H. halys.

SELECTION OF CITATIONS
SEARCH DETAIL