Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 259(3): 53, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294549

ABSTRACT

MAIN CONCLUSION: The biostimulant Hanseniaspora opuntiae regulates Arabidopsis thaliana root development and resistance to Botrytis cinerea. Beneficial microbes can increase plant nutrient accessibility and uptake, promote abiotic stress tolerance, and enhance disease resistance, while pathogenic microorganisms cause plant disease, affecting cellular homeostasis and leading to cell death in the most critical cases. Commonly, plants use specialized pattern recognition receptors to perceive beneficial or pathogen microorganisms. Although bacteria have been the most studied plant-associated beneficial microbes, the analysis of yeasts is receiving less attention. This study assessed the role of Hanseniaspora opuntiae, a fermentative yeast isolated from cacao musts, during Arabidopsis thaliana growth, development, and defense response to fungal pathogens. We evaluated the A. thaliana-H. opuntiae interaction using direct and indirect in vitro systems. Arabidopsis growth was significantly increased seven days post-inoculation with H. opuntiae during indirect interaction. Moreover, we observed that H. opuntiae cells had a strong auxin-like effect in A. thaliana root development during in vitro interaction. We show that 3-methyl-1-butanol and ethanol are the main volatile compounds produced by H. opuntiae. Subsequently, it was determined that A. thaliana plants inoculated with H. opuntiae have a long-lasting and systemic effect against Botrytis cinerea infection, but independently of auxin, ethylene, salicylic acid, or jasmonic acid pathways. Our results demonstrate that H. opuntiae is an important biostimulant that acts by regulating plant development and pathogen resistance through different hormone-related responses.


Subject(s)
Arabidopsis , Botrytis , Hanseniaspora , Indoleacetic Acids
2.
Front Plant Sci ; 14: 1326766, 2023.
Article in English | MEDLINE | ID: mdl-38250449

ABSTRACT

The Lotus japonicus population carrying new Lotus retrotransposon 1 (LORE1) insertions represents a valuable biological resource for genetic research. New insertions were generated by activation of the endogenous retroelement LORE1a in the germline of the G329-3 plant line and arranged in a 2-D system for reverse genetics. LORE1 mutants identified in this collection contributes substantially to characterize candidate genes involved in symbiotic association of L. japonicus with its cognate symbiont, the nitrogen-fixing bacteria Mesorhizobium loti that infects root nodules intracellularly. In this study we aimed to identify novel players in the poorly explored intercellular infection induced by Agrobacterium pusense IRBG74 sp. For this purpose, a forward screen of > 200,000 LORE1 seedlings, obtained from bulk propagation of G329-3 plants, inoculated with IRBG74 was performed. Plants with perturbed nodulation were scored and the offspring were further tested on plates to confirm the symbiotic phenotype. A total of 110 Lotus mutants with impaired nodulation after inoculation with IRBG74 were obtained. A comparative analysis of nodulation kinetics in a subset of 20 mutants showed that most of the lines were predominantly affected in nodulation by IRBG74. Interestingly, additional defects in the main root growth were observed in some mutant lines. Sequencing of LORE1 flanking regions in 47 mutants revealed that 92 Lotus genes were disrupted by novel LORE1 insertions in these lines. In the IM-S34 mutant, one of the insertions was located in the 5´UTR of the LotjaGi5g1v0179800 gene, which encodes the AUTOPHAGY9 protein. Additional mutant alleles, named atg9-2 and atg9-3, were obtained in the reverse genetic collection. Nodule formation was significantly reduced in these mutant alleles after M. loti and IRBG74 inoculation, confirming the effectiveness of the mutant screening. This study describes an effective forward genetic approach to obtain novel mutants in Lotus with a phenotype of interest and to identify the causative gene(s).

3.
Front Plant Sci ; 12: 738949, 2021.
Article in English | MEDLINE | ID: mdl-34804086

ABSTRACT

The chemical composition of a plant cuticle can change in response to various abiotic or biotic stresses and plays essential functions in disease resistance responses. Arabidopsis thaliana mutants altered in cutin content are resistant to Botrytis cinerea, presumably because of increased cuticular water and solute permeability, allowing for faster induction of defense responses. Within this context, our knowledge of wax mutants is limited against this pathogen. We tested the contribution of cuticular components to immunity to B. cinerea using mutants altered in either cutin or wax alone, or in both cutin and wax contents. We found that even all the tested mutants showed increased permeability and reactive oxygen species (ROS) accumulation in comparison with wild-type plants and that only cutin mutants showed resistance. To elucidate the early molecular mechanisms underlying cuticle-related immunity, we performed a transcriptomic analysis. A set of upregulated genes involved in cell wall integrity and accumulation of ROS were shared by the cutin mutants bdg, lacs2-3, and eca2, but not by the wax mutants cer1-4 and cer3-6. Interestingly, these genes have recently been shown to be required in B. cinerea resistance. In contrast, we found the induction of genes involved in abiotic stress shared by the two wax mutants. Our study reveals new insight that the faster recognition of a pathogen by changes in cuticular permeability is not enough to induce resistance to B. cinerea, as has previously been hypothesized. In addition, our data suggest that mutants with resistant phenotype can activate other defense pathways, different from those canonical immune ones.

4.
Front Plant Sci ; 10: 423, 2019.
Article in English | MEDLINE | ID: mdl-31057566

ABSTRACT

Salicylic acid (SA) is a plant hormone that has been described to play an essential role in the activation and regulation of multiple responses to biotic and to abiotic stresses. In particular, during plant-microbe interactions, as part of the defense mechanisms, SA is initially accumulated at the local infected tissue and then spread all over the plant to induce systemic acquired resistance at non-infected distal parts of the plant. SA can be produced by either the phenylalanine or isochorismate biosynthetic pathways. The first, takes place in the cytosol, while the second occurs in the chloroplasts. Once synthesized, free SA levels are regulated by a number of chemical modifications that produce inactive forms, including glycosylation, methylation and hydroxylation to dihydroxybenzoic acids. Glycosylated SA is stored in the vacuole, until required to activate SA-triggered responses. All this information suggests that SA levels are under a strict control, including its intra and extracellular movement that should be coordinated by the action of transporters. However, our knowledge on this matter is still very limited. In this review, we describe the most significant efforts made to date to identify the molecular mechanisms involved in SA transport throughout the plant. Additionally, we propose new alternatives that might help to understand the journey of this important phytohormone in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...