Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18585, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37903927

ABSTRACT

Gas leakage from deep geologic storage formations to the Earth's surface is one of the main hazards in geological carbon sequestration and storage. Permeable sediment covers together with natural pathways, such as faults and/or fracture systems, are the main factors controlling surface leakages. Therefore, the characterization of natural systems, where large amounts of natural gases are released, can be helpful for understanding the effects of potential gas leaks from carbon dioxide storage systems. In this framework, we propose a combined use of high-resolution geoelectrical investigations (i.e. resistivity tomography and self-potential surveys) for reconstructing shallow buried fracture networks in the caprock and detecting preferential gas migration pathways before it enters the atmosphere. Such methodologies appear to be among the most suitable for the research purposes because of the strong dependence of the electrical properties of water-bearing permeable rock, or unconsolidated materials, on many factors relevant to CO2 storage (i.e. porosity, fracturing, water saturation, etc.). The effectiveness of the suggested geoelectrical approach is tested in an area of natural gas degassing (mainly CH4) located in the active fault zone of the Bolle della Malvizza (Southern Apennines, Italy), which could represent a natural analogue of gas storage sites due to the significant thicknesses (hundreds of meters) of impermeable rock (caprock) that is generally required to prevent carbon dioxide stored at depth from rising to the surface. The obtained 3D geophysical model, validated by the good correlation with geochemical data acquired in the study area and the available geological information, provided a structural and physical characterization of the investigated subsurface volume. Moreover, the time variations of the observed geophysical parameters allowed the identification of possible migration pathways of fluids to the surface.

2.
Molecules ; 26(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806142

ABSTRACT

Genetic decoding is flexible, due to programmed deviation of the ribosomes from standard translational rules, globally termed "recoding". In Archaea, recoding has been unequivocally determined only for termination codon readthrough events that regulate the incorporation of the unusual amino acids selenocysteine and pyrrolysine, and for -1 programmed frameshifting that allow the expression of a fully functional α-l-fucosidase in the crenarchaeon Saccharolobus solfataricus, in which several functional interrupted genes have been identified. Increasing evidence suggests that the flexibility of the genetic code decoding could provide an evolutionary advantage in extreme conditions, therefore, the identification and study of interrupted genes in extremophilic Archaea could be important from an astrobiological point of view, providing new information on the origin and evolution of the genetic code and on the limits of life on Earth. In order to shed some light on the mechanism of programmed -1 frameshifting in Archaea, here we report, for the first time, on the analysis of the transcription of this recoded archaeal α-l-fucosidase and of its full-length mutant in different growth conditions in vivo. We found that only the wild type mRNA significantly increased in S. solfataricus after cold shock and in cells grown in minimal medium containing hydrolyzed xyloglucan as carbon source. Our results indicated that the increased level of fucA mRNA cannot be explained by transcript up-regulation alone. A different mechanism related to translation efficiency is discussed.


Subject(s)
Archaeal Proteins/biosynthesis , Gene Expression Regulation, Archaeal , Gene Expression Regulation, Enzymologic , Protein Biosynthesis , Sulfolobaceae/enzymology , alpha-L-Fucosidase/biosynthesis , Archaeal Proteins/genetics , Cold-Shock Response , Sulfolobaceae/genetics , alpha-L-Fucosidase/genetics
3.
Environ Sci Pollut Res Int ; 28(34): 46614-46626, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33040287

ABSTRACT

The Italian Apennines are among the most important sources of freshwater for several Italian regions. With evidences of deep CO2-rich fluids intruding into aquifers in the nearby central-southern Apennines, a thorough investigation into the geochemistry of groundwater became critical to ensure the water quality in the area. Here, we show the main hydrogeochemical processes occurring in the Matese Massif (MM) aquifer through the investigation of 98 water samples collected from springs and water wells. All waters were classified as HCO3 type with Ca dominance (from 50% up to 97%) and variable amount of Mg (from 1% up to 49%). A multivariate statistical approach through the application of the factor analysis (FA) highlighted three main hydrogeochemical processes: (i) water-carbonate rock interactions mostly enhanced in peripheral areas of the MM by CO2 deep degassing; (ii) addition of NaCl-rich components linked to recharging process and to water mixing processes of the groundwater with a thermal component relatively rich in Cl, Na, and CO2; (iii) anthropogenic activities influencing groundwater composition at the foothills of MM. Furthermore, the first detailed TDIC, pCO2, and δ13C-TDIC distribution maps of the MM area have been created, which track chemical and isotopic anomalies in several peripheral areas (Pratella, Ailano, and Telese) throughout the region. These maps systematically highlight that the greater the amount of dissolved carbon occurs the heavier the C isotope enrichment, especially in the peripheral areas. Conversely, spring waters emerging at higher altitudes within MM are only slightly mineralized and associated with δ13C-TDIC values mainly characterized by recharging processes with the addition of biogenic carbon during the infiltration process through the soil.


Subject(s)
Groundwater , Water Pollutants, Chemical , Carbon , Environmental Monitoring , Italy , Water Pollutants, Chemical/analysis , Water Quality
4.
PLoS One ; 9(7): e102456, 2014.
Article in English | MEDLINE | ID: mdl-25058537

ABSTRACT

Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).


Subject(s)
Archaea/genetics , Bacteria/genetics , Lakes , RNA, Ribosomal, 16S/genetics , Archaea/classification , Archaea/growth & development , Bacteria/classification , Bacteria/growth & development , Carbon Dioxide/chemistry , Costa Rica , DNA Fingerprinting , Hydrogen-Ion Concentration , Hydrothermal Vents/chemistry , Hydrothermal Vents/microbiology , Lakes/chemistry , Lakes/microbiology , Methane/chemistry , Oxidation-Reduction , Oxygen/chemistry , Phylogeny , Volcanic Eruptions
SELECTION OF CITATIONS
SEARCH DETAIL
...