Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Br J Haematol ; 202(1): 74-85, 2023 07.
Article in English | MEDLINE | ID: mdl-37070396

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cells targeted to the CD19 B-cell antigen form an approved treatment for patients with relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL). However, since this therapy is administered after multiple lines of treatment and exposure to lymphotoxic agents, there is an urgent need to optimize this modality of treatment. METHODS: To circumvent the difficulties of harvesting adequate and optimal T cells from DLBCL patients and improve CART therapy, we suggest an earlier lymphopheresis (i.e. at first relapse, before salvage treatment). We conducted a prospective study and evaluated the potential benefit of an earlier lymphopheresis (early group, n = 22) on the clinical outcome of CD19-CART infused DLBCL patients, in comparison with standard lymphopheresis (i.e. at second relapse and beyond; standard group, n = 23). RESULTS: An increased percentage of naïve T cells and increased in vitro T-cell functionality were observed in the early group. Additionally, these cells exhibit a lower exhaustion profile than T cells collected in the standard group. CONCLUSION: While improved T-cell phenotype and function in the lymphopheresis product did not translate into significantly improved clinical outcomes, a trend towards better overall survival (OS) and progression-free survival (PFS) was observed. Early lymphopheresis maximizes the potential of salvage therapies, without compromising CAR T-cell quality.


Subject(s)
Immunotherapy, Adoptive , Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , Humans , Antigens, CD19 , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Non-Hodgkin/drug therapy , Neoplasm Recurrence, Local/drug therapy , Prospective Studies , Receptors, Antigen, T-Cell , T-Lymphocytes
2.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Article in English | MEDLINE | ID: mdl-35065284

ABSTRACT

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Subject(s)
Exome , Pathology, Molecular , Child , Exome/genetics , Humans , Mutation , Rare Diseases/genetics , Retrospective Studies , Exome Sequencing/methods
3.
J Mol Diagn ; 24(2): 177-188, 2022 02.
Article in English | MEDLINE | ID: mdl-35074075

ABSTRACT

Exome reanalysis is useful for providing molecular diagnoses for previously uninformative samples. However, challenges exist in implementing a practical solution for clinicians and laboratories. This study complements the current literature by providing practical considerations for patient-level and cohort-level reanalyses. The Clinical and Laboratory Standards Institute assembled the Document Development Committee and an interpretation working group that developed the framework for reevaluation of exome-based data. We describe two distinct but complementary approaches toward exome reanalyses: clinician-initiated patient-level reanalysis, and laboratory-initiated cohort-level reanalysis. We highlight the advantages and constraints for both approaches, and provide a high-level conceptual guide for ordering clinicians and laboratories through the critical decision pathways. Because clinical exome sequencing continues to be the standard of care in genetics, exome reanalysis would be critical in increasing the overall diagnostic yield. A systematic guide will facilitate the efficient adoption of reevaluation of exome data for laboratories, health care professionals, genetic counselors, and clinicians.


Subject(s)
Clinical Laboratory Services , Exome , Exome/genetics , Humans , Laboratories , Laboratories, Clinical , Exome Sequencing
5.
Am J Med Genet A ; 185(5): 1486-1493, 2021 05.
Article in English | MEDLINE | ID: mdl-33683002

ABSTRACT

The RASopathies are a group of similar genetic syndromes with cardiovascular abnormalities, characteristic facial features, short stature, abnormalities of the skin and musculoskeletal system, and variable neurodevelopmental challenges. The most common cardiovascular abnormalities include pulmonary valvular stenosis and hypertrophic cardiomyopathy. Congenital polyvalvular disease (CPVD) refers to congenital dysplasia of two or more cardiac valves. We diagnosed a RASopathy in two individuals with CPVD and noted that CPVD in RASopathies has rarely been reported in the literature. Thus, we performed a retrospective chart review and literature review to investigate the association and characterize the phenotype of CPVD in the RASopathies. CPVD was present in 2.5% (n = 6/243) of individuals in our RASopathy cohort. Involvement of two cardiac valves, commonly the aortic and pulmonic valves, was seen in the majority of individuals (6/8; 75%) in our cohort, but only 27% (3/11) of reported CPVD and RASopathy cases in the literature. CPVD should be considered an associated cardiovascular phenotype of the RASopathies, which has implications for diagnosis and management.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Proteins B-raf/genetics , Pulmonary Valve Stenosis/genetics , Adolescent , Aortic Valve/pathology , Cardiomyopathy, Hypertrophic/epidemiology , Cardiomyopathy, Hypertrophic/pathology , Cardiovascular Abnormalities/epidemiology , Cardiovascular Abnormalities/genetics , Cardiovascular Abnormalities/pathology , Child , Child, Preschool , Dwarfism/genetics , Dwarfism/pathology , Facies , Female , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Humans , Infant , Infant, Newborn , Male , Musculoskeletal Abnormalities/epidemiology , Musculoskeletal Abnormalities/genetics , Musculoskeletal Abnormalities/pathology , Noonan Syndrome , Phenotype , Pulmonary Valve Stenosis/epidemiology , Pulmonary Valve Stenosis/pathology , Skin Abnormalities/genetics , Skin Abnormalities/pathology , ras Proteins/genetics
6.
Eur J Hum Genet ; 27(4): 612-620, 2019 04.
Article in English | MEDLINE | ID: mdl-30626929

ABSTRACT

Clinical exome sequencing (CES) has become the preferred diagnostic platform for complex pediatric disorders with suspected monogenic etiologies. Despite rapid advancements, the major challenge still resides in identifying the casual variants among the thousands of variants detected during CES testing, and thus establishing a molecular diagnosis. To improve the clinical exome diagnostic efficiency, we developed Phenoxome, a robust phenotype-driven model that adopts a network-based approach to facilitate automated variant prioritization. Phenoxome dissects the phenotypic manifestation of a patient in concert with their genomic profile to filter and then prioritize variants that are likely to affect the function of the gene (potentially pathogenic variants). To validate our method, we have compiled a clinical cohort of 105 positive patient samples that represent a wide range of genetic heterogeneity. Phenoxome identifies the causative variants within the top 5, 10, or 25 candidates in more than 50%, 71%, or 88% of these exomes, respectively. Furthermore, we show that our method is optimized for clinical testing by outperforming the current state-of-art method. We have demonstrated the performance of Phenoxome using a clinical cohort and showed that it enables rapid and accurate interpretation of clinical exomes. Phenoxome is available at https://phenoxome.chop.edu/ .


Subject(s)
Exome Sequencing/statistics & numerical data , Exome/genetics , Genetic Heterogeneity , Software , Computational Biology , Databases, Genetic , Humans
7.
J Mol Diagn ; 21(1): 38-48, 2019 01.
Article in English | MEDLINE | ID: mdl-30577886

ABSTRACT

Clinical exome sequencing (CES) has a reported diagnostic yield of 20% to 30% for most clinical indications. The ongoing discovery of novel gene-disease and variant-disease associations are expected to increase the diagnostic yield of CES. Performing systematic reanalysis of previously nondiagnostic CES samples represents a significant challenge for clinical laboratories. Here, we present the results of a novel automated reanalysis methodology applied to 300 CES samples initially analyzed between June 2014 and September 2016. Application of our reanalysis methodology reduced reanalysis variant analysis burden by >93% and correctly captured 70 of 70 previously identified diagnostic variants among 60 samples with previously identified diagnoses. Notably, reanalysis of 240 initially nondiagnostic samples using information available on July 1, 2017, revealed 38 novel diagnoses, representing a 15.8% increase in diagnostic yield. Modeling monthly iterative reanalysis of 240 nondiagnostic samples revealed a diagnostic rate of 0.57% of samples per month. Modeling the workload required for monthly iterative reanalysis of nondiagnostic samples revealed a variant analysis burden of approximately 5 variants/month for proband-only and approximately 0.5 variants/month for trio samples. Approximately 45% of samples required evaluation during each monthly interval, and 61.3% of samples were reevaluated across three consecutive reanalyses. In sum, automated reanalysis methods can facilitate efficient reevaluation of nondiagnostic samples using up-to-date literature and can provide significant value to clinical laboratories.


Subject(s)
Exome Sequencing/methods , DNA/genetics , Exome , Female , Genetic Testing/methods , Genetic Variation , Humans , Male
8.
Am J Hum Genet ; 103(5): 752-768, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388402

ABSTRACT

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.


Subject(s)
Haploinsufficiency/genetics , Intellectual Disability/genetics , Megalencephaly/genetics , NFI Transcription Factors/genetics , Adolescent , Adult , Animals , Cerebral Cortex/pathology , Child , Child, Preschool , Codon, Nonsense/genetics , Cohort Studies , Corpus Callosum/pathology , Female , Humans , Male , Mice , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Young Adult
9.
Hum Mutat ; 39(11): 1641-1649, 2018 11.
Article in English | MEDLINE | ID: mdl-30311378

ABSTRACT

ClinVar provides open access to variant classifications shared from many clinical laboratories. Although most classifications are consistent across laboratories, classification differences exist. To facilitate resolution of classification differences on a large scale, clinical laboratories were encouraged to reassess outlier classifications of variants with medically significant differences (MSDs). Outliers were identified by first comparing ClinVar submissions from 41 clinical laboratories to detect variants with MSDs between the laboratories (650 variants). Next, MSDs were filtered for variants with ≥3 classifications (244 variants), of which 87.6% (213 variants) had a majority consensus in ClinVar, thus allowing for identification of outlier classifications in need of reassessment. Laboratories with outlier classifications were sent a custom report and encouraged to reassess variants. Results were returned for 204 (96%) variants, of which 62.3% (127) were resolved. Of those 127, 64.6% (82) were resolved due to reassessment prompted by this study and 35.4% (45) resolved by a previously completed reassessment. This study demonstrates a scalable approach to classification resolution and capitalizes on the value of data sharing within ClinVar. These activities will help the community move toward more consistent variant classifications, which will improve the care of patients with, or at risk for, genetic disorders.


Subject(s)
Databases, Genetic , Genetic Testing/methods , Genetic Variation/genetics , Genome, Human/genetics , Humans
10.
Am J Med Genet A ; 176(9): 1890-1896, 2018 09.
Article in English | MEDLINE | ID: mdl-30152016

ABSTRACT

Xia-Gibbs syndrome (XGS) is a recently described neurodevelopmental disorder due to heterozygous loss-of-function AHDC1 mutations. XGS is characterized by global developmental delay, intellectual disability, hypotonia, and sleep abnormalities. Here we report the clinical phenotype of five of six individuals with XGS identified prospectively at the Children's Hospital of Philadelphia, a tertiary children's hospital in the USA. Although all five patients demonstrated common clinical features characterized by developmental delay and characteristic facial features, each of our patients showed unique clinical manifestations. Patient one had craniosynostosis; patient two had sensorineural hearing loss and bicuspid aortic valve; patient three had cutis aplasia; patient four had soft, loose skin; and patient five had a lipoma. Differential diagnoses considered for each patient were quite broad, and included craniosynostosis syndromes, connective tissue disorders, and mitochondrial disorders. Exome sequencing identified a heterozygous, de novo AHDC1 loss-of-function mutation in four of five patients; the remaining patient has a 357kb interstitial deletion of 1p36.11p35.3 including AHDC1. Although it remains unknown whether these unique clinical manifestations are rare symptoms of XGS, our findings indicate that the diagnosis of XGS should be considered even in individuals with additional non-neurological symptoms, as the clinical spectrum of XGS may involve such non-neurological manifestations. Adding to the growing literature on XGS, continued cohort studies are warranted in order to both characterize the clinical spectrum of XGS as well as determine standard of care for patients with this diagnosis.


Subject(s)
Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Adult , Alleles , Biological Variation, Population , Child , Child, Preschool , Facies , Female , Genetic Markers , Genotype , High-Throughput Nucleotide Sequencing , Hospitals, Pediatric , Humans , Imaging, Three-Dimensional , Infant , Male , Mutation , Symptom Assessment , Syndrome , Tomography, X-Ray Computed
11.
Am J Hum Genet ; 103(2): 305-316, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30057029

ABSTRACT

Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.


Subject(s)
F-Box Proteins/genetics , Genetic Variation/genetics , Neurodevelopmental Disorders/genetics , Protein-Arginine N-Methyltransferases/genetics , Child , Exome/genetics , Female , Genetic Association Studies/methods , Humans , Intellectual Disability/genetics , Male , Microcephaly/genetics , Proteasome Endopeptidase Complex/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Exome Sequencing/methods
12.
Am J Hum Genet ; 101(5): 768-788, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100089

ABSTRACT

Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Intellectual Disability/genetics , Mutation/genetics , Animals , Brain/pathology , Cell Line , Exome/genetics , Female , Glutamic Acid/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/pathology , Phosphorylation/genetics , Signal Transduction/genetics
13.
Bone Marrow Transplant ; 52(10): 1416-1422, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28650453

ABSTRACT

GvHD results in death in the majority of steroid-resistant patients. This report assesses the safety and efficacy of two regional intra-arterial steroid (IAS) treatment protocols in the largest published cohort of patients with resistant/dependent hepatic and/or gastrointestinal GvHD, as well as identification of predictors of response to IAS and survival. One hundred and twenty patients with hepatic, gastrointestinal GvHD or both were given IAS. Gastrointestinal initial response (IR) and complete response (CR) were documented in 67.9% and 47.6%, respectively, whereas hepatic IR/CR in 54.9% and 33.3%, respectively. The predictors of gastrointestinal CR were lower peak GvHD and steroid-dependent (SD) GvHD. The predictors for hepatic CR were male patient, reduced intensity conditioning and SD GvHD. Twenty-six of the 120 patients (21.6%) are currently alive (median follow-up for the survivors 91.5 months). The 12 months' overall survival is 30% with no treatment-associated deaths. Predictors of 12 months' survival were as follows: first transplant, age<20 years, non-TBI regimen and GvHD CR. Shorter time to gastrointestinal IR but not time to hepatic IR was associated with improved 12 months' survival. IAS appears to be safe and effective. Gastrointestinal treatment is more effective than hepatic treatment. In our study, we conclude our current recommendations for IAS treatment.


Subject(s)
Gastrointestinal Diseases , Graft vs Host Disease , Liver Diseases , Steroids/administration & dosage , Adolescent , Adult , Aged , Child , Child, Preschool , Disease-Free Survival , Drug Resistance , Female , Follow-Up Studies , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/mortality , Graft vs Host Disease/drug therapy , Graft vs Host Disease/mortality , Humans , Infusions, Intra-Arterial , Liver Diseases/drug therapy , Liver Diseases/mortality , Male , Middle Aged , Survival Rate
14.
Am J Hum Genet ; 100(6): 895-906, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28552198

ABSTRACT

With advances in genomic sequencing technology, the number of reported gene-disease relationships has rapidly expanded. However, the evidence supporting these claims varies widely, confounding accurate evaluation of genomic variation in a clinical setting. Despite the critical need to differentiate clinically valid relationships from less well-substantiated relationships, standard guidelines for such evaluation do not currently exist. The NIH-funded Clinical Genome Resource (ClinGen) has developed a framework to define and evaluate the clinical validity of gene-disease pairs across a variety of Mendelian disorders. In this manuscript we describe a proposed framework to evaluate relevant genetic and experimental evidence supporting or contradicting a gene-disease relationship and the subsequent validation of this framework using a set of representative gene-disease pairs. The framework provides a semiquantitative measurement for the strength of evidence of a gene-disease relationship that correlates to a qualitative classification: "Definitive," "Strong," "Moderate," "Limited," "No Reported Evidence," or "Conflicting Evidence." Within the ClinGen structure, classifications derived with this framework are reviewed and confirmed or adjusted based on clinical expertise of appropriate disease experts. Detailed guidance for utilizing this framework and access to the curation interface is available on our website. This evidence-based, systematic method to assess the strength of gene-disease relationships will facilitate more knowledgeable utilization of genomic variants in clinical and research settings.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genomics , Humans , Reproducibility of Results
15.
Neurol Genet ; 3(1): e130, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28180185

ABSTRACT

OBJECTIVE: ATAD1 encodes Thorase, a mediator of α-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptor recycling; in this work, we characterized the phenotype resulting from ATAD1 mutations and developed a targeted therapy in both mice and humans. METHODS: Using exome sequencing, we identified a novel ATAD1 mutation (p.E276X) as the etiology of a devastating neurologic disorder characterized by hypertonia, seizures, and death in a consanguineous family. We postulated that pathogenesis was a result of excessive AMPA receptor activity and designed a targeted therapeutic approach using perampanel, an AMPA-receptor antagonist. RESULTS: Perampanel therapy in ATAD1 knockout mice reversed behavioral defects, normalized brain MRI abnormalities, prevented seizures, and prolonged survival. The ATAD1 patients treated with perampanel showed improvement in hypertonicity and resolution of seizures. CONCLUSIONS: This work demonstrates that identification of novel monogenic neurologic disorders and observation of response to targeted therapeutics can provide important insights into human nervous system functioning.

16.
Genet Med ; 19(6): 715-718, 2017 06.
Article in English | MEDLINE | ID: mdl-27763634

ABSTRACT

INTRODUCTION: RASopathies include disorders generally characterized by developmental delay, specific heart defects, short stature, cardiac hypertrophy, and facial dysmorphisms. Next-generation sequencing (NGS)-based panels have widespread acceptance as a diagnostic tool for RASopathies. MATERIALS AND METHODS: The first 126 patients evaluated by clinical examination and the NGS RASopathy panel at the Children's Hospital of Philadelphia were enrolled. We calculated diagnosis rate, correlated reported clinical findings with positive or negative test results, and identified final molecular diagnoses in 28/96 patients who tested negative for RASopathies. RESULTS: Twenty-four patients had pathogenic variants on the RASopathy panel, for a diagnostic yield of 19%. Reported features of pulmonic stenosis and ptosis were significantly correlated with a positive test result; no reported features were significantly correlated with a negative test result. We identified 27 different alternative diagnoses for patients originally suspected of having RASopathies. DISCUSSION: This study provides information that can assist in guiding differential diagnosis and genetic testing for patients suspected of having a RASopathy disorder.Genet Med advance online publication 20 October 2016.


Subject(s)
Costello Syndrome/genetics , High-Throughput Nucleotide Sequencing , LEOPARD Syndrome/genetics , Noonan Syndrome/genetics , Humans , MAP Kinase Signaling System , Phenotype , Retrospective Studies , ras Proteins/metabolism
17.
Hematol Oncol ; 35(4): 591-598, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27734521

ABSTRACT

In recent years, anti-CD20 antibodies have been increasingly used to treat lymphoproliferative and immune disorders. Chronic viral infections are infrequently reported in patients receiving these therapies. Enteroviral infection can cause life-threatening meningoencephalitis and other systemic chronic syndromes in immune deficient patients. We describe the clinical courses and outcomes of 6 patients from 2 tertiary care institutions who developed chronic enteroviral infection with neurological manifestations, after combined chemoimmunotherapy with rituximab for B-cell lymphoma. We review the literature that includes 10 sporadic reported cases of chronic enteroviral meningoencephalitis attributed to rituximab therapy. It is a rare disease, and its diagnosis is often elusive. We propose that low immunoglobulin G levels are the main risk factor for developing chronic enteroviral infection and emphasize the need for a high index of suspicion, early diagnosis, and intervention in this iatrogenic and potentially fatal complication.


Subject(s)
Antineoplastic Agents, Immunological/adverse effects , Enterovirus Infections/etiology , Lymphoma, Non-Hodgkin/complications , Rituximab/adverse effects , Adult , Aged , Antibodies, Monoclonal, Murine-Derived/adverse effects , Antibodies, Monoclonal, Murine-Derived/therapeutic use , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers , Biopsy , Bone Marrow/pathology , Cyclophosphamide/adverse effects , Cyclophosphamide/therapeutic use , Doxorubicin/adverse effects , Doxorubicin/therapeutic use , Enterovirus Infections/diagnosis , Enterovirus Infections/drug therapy , Fatal Outcome , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Lymphoma, Non-Hodgkin/diagnosis , Lymphoma, Non-Hodgkin/drug therapy , Male , Middle Aged , Multimodal Imaging , Prednisone/adverse effects , Prednisone/therapeutic use , Rituximab/administration & dosage , Rituximab/therapeutic use , Treatment Outcome , Vincristine/adverse effects , Vincristine/therapeutic use
18.
Hum Genomics ; 9: 15, 2015 Jul 19.
Article in English | MEDLINE | ID: mdl-26187847

ABSTRACT

BACKGROUND: Conditions associated with sudden cardiac arrest/death (SCA/D) in youth often have a genetic etiology. While SCA/D is uncommon, a pro-active family screening approach may identify these inherited structural and electrical abnormalities prior to symptomatic events and allow appropriate surveillance and treatment. This study investigated the diagnostic utility of exome sequencing (ES) by evaluating the capture and coverage of genes related to SCA/D. METHODS: Samples from 102 individuals (13 with known molecular etiologies for SCA/D, 30 individuals without known molecular etiologies for SCA/D and 59 with other conditions) were analyzed following exome capture and sequencing at an average read depth of 100X. Reads were mapped to human genome GRCh37 using Novoalign, and post-processing and analysis was done using Picard and GATK. A total of 103 genes (2,190 exons) related to SCA/D were used as a primary filter. An additional 100 random variants within the targeted genes associated with SCA/D were also selected and evaluated for depth of sequencing and coverage. Although the primary objective was to evaluate the adequacy of depth of sequencing and coverage of targeted SCA/D genes and not for primary diagnosis, all patients who had SCA/D (known or unknown molecular etiologies) were evaluated with the project's variant analysis pipeline to determine if the molecular etiologies could be successfully identified. RESULTS: The majority of exons (97.6 %) were captured and fully covered on average at minimum of 20x sequencing depth. The proportion of unique genomic positions reported within poorly covered exons remained small (4 %). Exonic regions with less coverage reflect the need to enrich these areas to improve coverage. Despite limitations in coverage, we identified 100 % of cases with a prior known molecular etiology for SCA/D, and analysis of an additional 30 individuals with SCA/D but no known molecular etiology revealed a diagnostic answer in 5/30 (17 %). We also demonstrated 95 % of 100 randomly selected reported variants within our targeted genes would have been picked up on ES based on our coverage analysis. CONCLUSIONS: ES is a helpful clinical diagnostic tool for SCA/D given its potential to successfully identify a molecular diagnosis, but clinicians should be aware of limitations of available platforms from technical and diagnostic perspectives.


Subject(s)
Death, Sudden, Cardiac , Exome/genetics , Genomics , High-Throughput Nucleotide Sequencing/methods , Adolescent , Alleles , Child , Genome, Human , Humans , Sequence Analysis, DNA , Young Adult
19.
J Thorac Cardiovasc Surg ; 148(6): 2560-6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25282659

ABSTRACT

OBJECTIVE: Apolipoprotein E (APOE) genotype is a determinant of neurologic recovery after brain ischemia and traumatic brain injury. The APOE ε2 allele has been associated with worse neurodevelopmental (ND) outcome after repair of congenital heart defects (CHD) in infancy. Replication of this finding in an independent cohort is essential to validate the observed genotype-phenotype association. METHODS: The association of APOE genotype with ND outcomes was assessed in a combined cohort of patients with single-ventricle CHD enrolled in the Single Ventricle Reconstruction and Infant Single Ventricle trials. ND outcome was assessed at 14 months using the Psychomotor Development Index (PDI) and Mental Development Index (MDI) of the Bayley Scales of Infant Development-II. Stepwise multivariable regression was performed to develop predictive models for PDI and MDI scores. RESULTS: Complete data were available for 298 of 435 patients. After adjustment for preoperative and postoperative covariates, the APOE ε2 allele was associated with a lower PDI score (P = .038). Patients with the ε2 allele had a PDI score approximately 6 points lower than those without the risk allele, explaining 1.04% of overall PDI variance, because the ε2 allele was present in only 11% of the patients. There was a marginal effect of the ε2 allele on MDI scores (P = .058). CONCLUSIONS: These data validate the association of the APOE ε2 allele with adverse early ND outcomes after cardiac surgery in infants, independent of patient and operative factors. Genetic variants that decrease neuroresilience and impair neuronal repair after brain injury are important risk factors for ND dysfunction after surgery for CHD.


Subject(s)
Apolipoprotein E2/genetics , Cardiac Surgical Procedures/adverse effects , Developmental Disabilities/genetics , Heart Defects, Congenital/surgery , Nervous System/growth & development , Age Factors , Child Development , Developmental Disabilities/physiopathology , Developmental Disabilities/psychology , Female , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Male , Multivariate Analysis , Neuropsychological Tests , Phenotype , Predictive Value of Tests , Reproducibility of Results , Risk Factors
20.
PLoS One ; 9(7): e103491, 2014.
Article in English | MEDLINE | ID: mdl-25058678

ABSTRACT

Targeted DNA enrichment coupled with next generation sequencing has been increasingly used for interrogation of select sub-genomic regions at high depth of coverage in a cost effective manner. Specificity measured by on-target efficiency is a key performance metric for target enrichment. Non-specific capture leads to off-target reads, resulting in waste of sequencing throughput on irrelevant regions. Microdroplet-PCR allows simultaneous amplification of up to thousands of regions in the genome and is among the most commonly used strategies for target enrichment. Here we show that carryover of single-stranded template genomic DNA from microdroplet-PCR constitutes a major contributing factor for off-target reads in the resultant libraries. Moreover, treatment of microdroplet-PCR enrichment products with a nuclease specific to single-stranded DNA alleviates off-target load and improves enrichment specificity. We propose that nuclease treatment of enrichment products should be incorporated in the workflow of targeted sequencing using microdroplet-PCR for target capture. These findings may have a broad impact on other PCR based applications for which removal of template DNA is beneficial.


Subject(s)
DNA, Single-Stranded/metabolism , Microfluidics/methods , Plant Proteins/metabolism , Polymerase Chain Reaction/methods , Single-Strand Specific DNA and RNA Endonucleases/metabolism , High-Throughput Nucleotide Sequencing , Reproducibility of Results , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...