Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Emerg Infect Dis ; 29(5): 988-991, 2023 05.
Article in English | MEDLINE | ID: mdl-37081590

ABSTRACT

Cutaneous leishmaniasis (CL) is endemic to Israel. Previously, CL caused by Leishmania infantum had been reported in Israel only once (in 2016). We report 8 L. infantum CL cases; 7 occurred during 2020-2021. None of the patients had systemic disease. L. infantum CL may be an emerging infection in Israel.


Subject(s)
Leishmania infantum , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Humans , Israel/epidemiology , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/epidemiology
2.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499729

ABSTRACT

Cutaneous squamous cell carcinoma (CSCC) is an epidermal skin cancer that evolves from normal epidermis along several pre-malignant stages. Previously we found specific miRNAs alterations in each step along these stages. miR-199a-3p expression decreases at the transition to later stages. A crucial step for epithelial carcinoma cells to acquire invasive capacity is the disruption of cell-cell contacts and the gain of mesenchymal motile phenotype, a process known as epithelial-to-mesenchymal transition (EMT). This study aims to study the role of decreased expression of miR-199a-3p in keratinocytes' EMT towards carcinogenesis. First, we measured miR-199a-3p in different stages of epidermal carcinogenesis. Then, we applied Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) assay to search for possible biochemical targets of miR-199a-3p and verified that Ras-associated protein B2 (RAP2B) is a bona-fide target of miR-199a-3p. Next, we analyzed RAP2B expression, in CSCC biopsies. Last, we evaluated possible mechanisms leading to decreased miR-199a-3p expression. miR-199a-3p induces a mesenchymal to epithelial transition (MET) in CSSC cells. Many of the under-expressed genes in CSCC overexpressing miR-199a-3p, are possible targets of miR-199a-3p and play roles in EMT. RAP2B is a biochemical target of miR-199a-3p. Overexpression of miR-199a-3p in CSCC results in decreased phosphorylated focal adhesion kinase (FAK). In addition, inhibiting FAK phosphorylation inhibits EMT marker genes' expression. In addition, we proved that DNA methylation is part of the mechanism by which miR-199a-3p expression is inhibited. However, it is not by the methylation of miR-199a putative promoter. These findings suggest that miR-199a-3p inhibits the EMT process by targeting RAP2B. Inhibitors of RAP2B or FAK may be effective therapeutic agents for CSCC.


Subject(s)
Carcinoma, Squamous Cell , MicroRNAs , Skin Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Gene Expression Regulation, Neoplastic , ras Proteins/metabolism , Cell Line, Tumor , Skin Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , rap GTP-Binding Proteins/genetics , rap GTP-Binding Proteins/metabolism
3.
Am J Trop Med Hyg ; 107(5): 996-998, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36216319

ABSTRACT

Cutaneous leishmaniasis (CL) is endemic in Israel, caused mainly by Leishmania major (L. major) and L. tropica. In addition, returning travelers import another leishmanial species such as L. braziliensis. Although we are dealing with a skin disease, the blood bank in Israel does not accept blood donations from people infected with CL in cases of multiple lesions due to the possibility of transfusion. Our purpose was to investigate the prevalence of Leishmania in the blood of patients with active or previous CL. This pilot study screened patients with active or previous CL for parasites in their blood. All patients were infected in Israel or were returning travelers with leishmaniasis acquired in Latin America. Patients were seen at the Sheba Medical Center. In addition, patients were seen at their homes in L. tropica and L. major endemic regions in Israel. Blood samples were taken from each patient for culture and polymerase chain reaction (PCR). Altogether 62 blood samples were examined (L. tropica = 26, L. major = 33, and L. braziliensis = 3). Twenty-seven patients had an active disease and 35 were recovered. All blood cultures and PCR were negative for parasites except one blood sample that was PCR positive for L. braziliensis. The findings of our study, although a small sample, suggest that people with active or recent CL caused by L. major and L. tropica, do not harbor parasites in their blood. Thus, their exclusion from blood donation should be revisited. Further studies are needed with larger sample size and highly sensitive tests.


Subject(s)
Leishmania major , Leishmania tropica , Leishmaniasis, Cutaneous , Humans , Blood Donors , Pilot Projects , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/parasitology
4.
Nat Commun ; 12(1): 4851, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381047

ABSTRACT

Pathogens are thought to use host molecular cues to control when to initiate life-cycle transitions, but these signals are mostly unknown, particularly for the parasitic disease malaria caused by Plasmodium falciparum. The chemokine CXCL10 is present at high levels in fatal cases of cerebral malaria patients, but is reduced in patients who survive and do not have complications. Here we show a Pf 'decision-sensing-system' controlled by CXCL10 concentration. High CXCL10 expression prompts P. falciparum to initiate a survival strategy via growth acceleration. Remarkably, P. falciparum inhibits CXCL10 synthesis in monocytes by disrupting the association of host ribosomes with CXCL10 transcripts. The underlying inhibition cascade involves RNA cargo delivery into monocytes that triggers RIG-I, which leads to HUR1 binding to an AU-rich domain of the CXCL10 3'UTR. These data indicate that when the parasite can no longer keep CXCL10 at low levels, it can exploit the chemokine as a cue to shift tactics and escape.


Subject(s)
Chemokine CXCL10/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/physiology , 3' Untranslated Regions , Chemokine CXCL10/genetics , DEAD Box Protein 58/metabolism , ELAV-Like Protein 1/metabolism , Extracellular Vesicles/metabolism , Host-Parasite Interactions , Humans , Life Cycle Stages , Malaria, Falciparum/immunology , Monocytes/metabolism , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protein Biosynthesis , RNA, Protozoan/metabolism , Receptors, Immunologic/metabolism , Ribosomes/metabolism , THP-1 Cells
5.
J Dermatol Sci ; 103(2): 93-100, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34281744

ABSTRACT

BACKGROUND: Numerous alterations in gene expression have been described in psoriatic lesions compared to uninvolved or healthy skin. However, the mechanisms which induce this altered expression remain unclear. Epigenetic modifications play a key role in regulating genes' expression. Only three studies compared the whole-genome DNA methylation of psoriasis versus healthy skin. The present is the first study of genome-wide comparison of histone modifications between psoriatic to healthy skins. OBJECTIVE: Our objective was to explore the pattern of H3K27Ac modifications in psoriatic lesions compared to uninvolved psoriatic and healthy skin, in order to identify new genes involved in the pathogenesis of psoriasis. METHOD: Using ChIP-seq with anti H3K27Ac we compared the acetylation of lysine 27 on histone 3 (H3K27Ac) modification between psoriatic to healthy skins, combined with mRNA array. RESULTS: We found a differential H3K27Ac pattern between psoriatic compared to uninvolved or healthy skins. We found that many of the overexpressed and H3K27Ac enriched genes in psoriasis, harbor a putative GRHL transcription factor-binding site. CONCLUSIONS: In the most overexpressed genes in psoriasis, there is an enrichment of H3K27Ac. However, the loss of H3K27 acetylation modification does not correlate with decreased gene expression. GRHL appears to play an important role in the pathogenesis of psoriasis and therefore, might be a new target for psoriasis therapeutics.


Subject(s)
Histone Code , Psoriasis/etiology , Case-Control Studies , Gene Expression , Humans , Psoriasis/metabolism , Transcription Factors/metabolism
6.
Int J Mol Sci ; 22(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806327

ABSTRACT

Personalised medicine is the future and hope for many patients, including those with cancers. Early detection, as well as rapid, well-selected treatment, are key factors leading to a good prognosis. MicroRNA mediated gene regulation is a promising area of development for new diagnostic and therapeutic methods, crucial for better prospects for patients. Bladder cancer is a frequent neoplasm, with high lethality and lacking modern, advanced therapeutic modalities, such as immunotherapy. MicroRNAs are involved in bladder cancer pathogenesis, proliferation, control and response to treatment, which we summarise in this perspective in response to lack of recent review publications in this field. We further performed a correlation-based analysis of microRNA and gene expression data in bladder cancer (BLCA) TCGA dataset. We identified 27 microRNAs hits with opposite expression profiles to genes involved in immune response in bladder cancer, and 24 microRNAs hits with similar expression profiles. We discuss previous studies linking the functions of these microRNAs to bladder cancer and assess if they are good candidates for personalised medicine therapeutics and diagnostics. The discussed functions include regulation of gene expression, interplay with transcription factors, response to treatment, apoptosis, cell proliferation and angiogenesis, initiation and development of cancer, genome instability and tumour-associated inflammatory reaction.


Subject(s)
Immune Checkpoint Proteins/genetics , MicroRNAs/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Databases, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Immunological Synapses/genetics , Models, Genetic , RNA, Messenger/genetics , RNA, Neoplasm/genetics
7.
Front Cell Infect Microbiol ; 11: 649480, 2021.
Article in English | MEDLINE | ID: mdl-33869080

ABSTRACT

Schistosomiasis (Bilharziasis), a neglected tropical disease that affects more than 240 million people around the world, is caused by infection with the helminth parasite Schistosoma. As part of their secretome, schistosomes release extracellular vesicles (EVs) that modulate the host immune response. The EV-harbored miRNAs upregulate the innate immune response of the M1 pathway and downregulate the differentiation toward the adaptive Th2 immunity. A schistosomal egg-derived miRNA increases the percentage of regulatory T cells. This schistosomal-inducible immunoediting process generates ultimately a parasitic friendly environment that is applied carefully as restrained Th2 response is crucial for the host survival and successful excretion of the eggs. Evidence indicates a selective targeting of schistosomal EVs, however, the underlying mechanisms are unclear yet. The effects of the schistosomes on the host immune system is in accordance with the hygiene hypothesis, attributing the dramatic increase in recent decades in allergy and other diseases associated with imbalanced immune response, to the reduced exposure to infectious agents that co-evolved with humans during evolution. Deciphering the bioactive cargo, function, and selective targeting of the parasite-secreted EVs may facilitate the development of novel tools for diagnostics and delivered therapy to schistosomiasis, as well as to immune-associated disorders.


Subject(s)
Extracellular Vesicles , MicroRNAs , Schistosomiasis , Animals , Humans , Immunity , Schistosoma
8.
Clin Exp Immunol ; 205(2): 160-168, 2021 08.
Article in English | MEDLINE | ID: mdl-33899933

ABSTRACT

Renal cell carcinoma (RCC) is comprised of clear-cell (ccRCC) and non-clear-cell (nccRCC) tumors. Despite definitive surgical resection in localized disease, recurrence often occurs. A commercial method based on a multiplex polymerase chain reaction (PCR) assay exclusively targets rearranged T cell receptor (TCR) genes to generate high-throughput sequencing-based data, allowing characterization of the immune repertoire within tumors. In this study we performed a retrospective analysis on archived tumor samples from patients with recurring versus non-recurring T3 ccRCC and on samples from early nccRCC versus ccRCC. Following genomic DNA extraction and multiplex PCR, the fraction of T cells within tumors, the number of unique receptors ('richness') and their relative abundances ('clonality') were calculated. Statistical significance and correlations were calculated using Student's t-test and Spearman's rho, respectively. Average fraction and clonality of T cells in tumors from non-recurring patients was 2.5- and 4.3-fold higher than in recurring patients (P = 0.025 and P = 0.043, respectively). A significant positive correlation was found between T cell fraction and clonality (Spearman's rho = 0.78, P = 0.008). The average fraction of T cells in ccRCC tumors was 2.8-fold higher than in nccRCC tumors (P = 0.015). Clonality and estimated richness were similar between ccRCC and nccRCC tumors. In summary, recurrence of ccRCC is associated with a lower fraction and clonality of T cells within tumors; nccRCC tumors are more 'deserted' than ccRCC, but similar in their ability to generate a clonal T cell repertoire. Our work suggests associations between the characteristics of T cell infiltrate, histology and tumor recurrence.


Subject(s)
Carcinoma, Renal Cell/immunology , Kidney Neoplasms/immunology , Neoplasm Recurrence, Local/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Female , Humans , Male , Middle Aged , Retrospective Studies
9.
Mitochondrion ; 58: 200-212, 2021 05.
Article in English | MEDLINE | ID: mdl-33775872

ABSTRACT

Mitochondrial RNA degradation plays an important role in maintenance of the mitochondria genetic integrity. Mitochondrial localization of p53 was observed in non-stressed and stressed cells. p53, as an RNA-binding protein, exerts 3'→5' exoribonuclease activity. The data suggest that in non-stressed cells, mitochondrial matrix-localized p53, with exoribonuclease activity, may play a housekeeping positive role. p53, through restriction the formation of new RNA/DNA hybrid and processing R-loop, might serve as mitochondrial R-loop suppressor. Conversely, stress-induced matrix-p53 decreases the amount of mitochondrial single-stranded RNA transcripts (including polyA- and non-polyA RNAs), thereby leading to the decline in the amount of mitochondria-encoded oxidative phosphorylation components.


Subject(s)
Mitochondria/metabolism , RNA, Mitochondrial/metabolism , Tumor Suppressor Protein p53/metabolism , Humans , RNA Stability
10.
Exp Dermatol ; 30(8): 1177-1186, 2021 08.
Article in English | MEDLINE | ID: mdl-32780449

ABSTRACT

Psoriasis is a chronic inflammatory disorder with cutaneous and systemic manifestations and substantial negative effects on patients' quality of life. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play a role in the pathogenesis of psoriasis. Previously studies, from others and by us, highlighted specific miRNAs that are dysregulated in psoriatic lesions. MicroRNA-197-3p (miR-197) expression is downregulated in psoriatic lesions compared to normal or uninvolved skin in patients with psoriasis. We have previously reported that miR-197 could modulate IL-22 and IL-17 signalling in psoriasis. Herein, we identify additional biochemical targets of miR-197 in psoriasis. We applied a transcriptome-wide biochemical approach, Protein argonaute-2 photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (Ago2 PAR-CLIP), to search for new targets of miR-197 in live keratinocytes, and validated its results using reporter assay and analysing by Western blot protein levels in cells overexpressing miR-197. Ago2 PAR-CLIP identified biochemical targets of miR-197, including the alpha subunit of the IL-6 receptor (IL6R). This work provides evidence that IL6R in bona-fide biochemical target of miR-197. IL6R is known to be up-regulated in psoriasis and even was considered as a possible therapeutic target. From the present data and our previous studies, it appears that miR-197 is a major regulator of the interaction between immune system cells and keratinocytes.


Subject(s)
Cathepsins/metabolism , Cysteine Endopeptidases/metabolism , Keratinocytes/metabolism , MicroRNAs/metabolism , Receptors, Interleukin-6/metabolism , Cell Proliferation , Down-Regulation , Gene Expression Regulation , HaCaT Cells , Humans , Psoriasis/metabolism , Quality of Life , Transcriptional Activation
11.
EMBO Rep ; 21(1): e47882, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31825165

ABSTRACT

During the chronic stage of Schistosoma infection, the female lays fertile eggs, triggering a strong anti-parasitic type 2 helper T-cell (Th2) immune response. It is unclear how this Th2 response gradually declines even though the worms live for years and continue to produce eggs. Here, we show that Schistosoma mansoni downregulates Th2 differentiation in an antigen-presenting cell-independent manner, by modulating the Th2-specific transcriptional program. Adult schistosomes secrete miRNA-harboring extracellular vesicles that are internalized by Th cells in vitro. Schistosomal miRNAs are found also in T helper cells isolated from Peyer's patches and mesenteric lymph nodes of infected mice. In T helper cells, the schistosomal miR-10 targets MAP3K7 and consequently downmodulates NF-κB activity, a critical transcription factor for Th2 differentiation and function. Our results explain, at least partially, how schistosomes tune down the Th2 response, and provide further insight into the reciprocal geographic distribution between high prevalence of parasitic infections and immune disorders such as allergy. Furthermore, this worm-host crosstalk mechanism can be harnessed to develop diagnostic and therapeutic approaches for human schistosomiasis and Th2-associated diseases.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Cell Differentiation , Female , Mice , MicroRNAs/genetics , Schistosoma mansoni/genetics , Th2 Cells
12.
Transl Oncol ; 13(2): 193-200, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31869744

ABSTRACT

Immune checkpoint inhibitors have revolutionized cancer therapy, but not all cancers respond to the currently available drugs, and even within cancers considered responsive to such modality, response rates range between 15 and 40%, depending on the cancer type, the line of treatment, and yet unknown clinical/molecular factors. Coordinated expression of checkpoint proteins was shown to occur on T cells, probably allowing fine-tuning of the signal transmitted to the cell. We performed a bioinformatic analysis of the expression of putative checkpoint mRNAs at the cancer side of the immunological synapse from the bladder cancer tumorgenome atlas (TCGA) database. Fifteen mRNAs, corresponding to both coinhibitory and costimulatory checkpoints, were shown to be expressed above a designated threshold. Of these, seven mRNAs were found to be coexpressed: CD277, PD-1L, CD48, CD86, galectin-9, TNFRSF14 (HVEM), and CD40. The expression of 2 of these mRNAs-BTN3A1 (CD277) and TNFRSF14 (HVEM)-was positively correlated with overall survival in the TCGA database. All these seven mRNA share putative binding sites of a few transcription factors (TFs). Of these, the expression of the TF BACH-2 was positively correlated with the expression of checkpoint mRNAs from the network. This suggests a joint transcriptional regulation on the expression of checkpoint mRNAs at the bladder tumor side of the immunological synapse.

13.
Cancer Immunol Immunother ; 68(9): 1493-1500, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31501955

ABSTRACT

Immunotherapy with checkpoint inhibitors revolutionized melanoma treatment in both the adjuvant and metastatic setting, yet not all metastatic patients respond, and metastatic disease still often recurs among immunotherapy-treated patients with locally advanced disease. TNFSF4 is a co-stimulatory checkpoint protein expressed by several types of immune and non-immune cells, and was shown in the past to enhance the anti-neoplastic activity of T cells. Here, we assessed its expression in melanoma and its association with outcome in locally advanced and metastatic disease. We used publicly available data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE), and RNA sequencing data from anti-PD1-treated patients at Sheba medical center. TNFSF4 mRNA is expressed in melanoma cell lines and melanoma samples, including those with low lymphocytic infiltrates, and is not associated with the ulceration status of the primary tumor. Low expression of TNFSF4 mRNA is associated with worse prognosis in all melanoma patients and in the cohorts of stage III and stage IIIc-IV patients. Low expression of TNFSF4 mRNAs is also associated with worse prognosis in the subgroup of patients with low lymphocytic infiltrates, suggesting that tumoral TNFSF4 is associated with outcome. TNFSF4 expression was not correlated with the expression of other known checkpoint mRNAs. Last, metastatic patients with TNFSF4 mRNA expression within the lowest quartile have significantly worse outcome on anti-PD1 treatment, and a significantly lower response rate to these agents. Our current work points to TNFSF4 expression in melanoma as a potential determinant of prognosis, and warrants further translational and clinical research.


Subject(s)
Immunotherapy/methods , Melanoma/metabolism , OX40 Ligand/metabolism , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cohort Studies , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Melanoma/drug therapy , Melanoma/mortality , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Nivolumab/pharmacology , Nivolumab/therapeutic use , OX40 Ligand/genetics , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Survival Analysis , Treatment Outcome
14.
PLoS Negl Trop Dis ; 13(6): e0007398, 2019 06.
Article in English | MEDLINE | ID: mdl-31206518

ABSTRACT

BACKGROUND: Giardia lamblia is a very common cause of gastrointestinal symptoms worldwide. There are several methods for the diagnosis of Giardia infection, however none are ideal. We aim to find a new, microRNA-based method that will improve the currently available diagnostic methods for giardiasis. METHODS: Deep-sequence profiling of Giardia small-RNA revealed that miR5 and miR6 are highly expressed in Giardia. These miRNAs were tested by qRT-PCR in duodenal biopsies of patients with giardiasis who were positive by microscopic pathological evaluation. The gastric biopsies of the same patients served as negative control tissues. Additionally, these miRNAs were evaluated in stool samples of patients with proven giardiasis. RESULTS: All histologically proven duodenal biopsies of patients with Giardia infection were positive for Giardia miR5, with a mean threshold cycle (Ct) of 23.7, as well as for Giardia DNA qPCR (16S-like gene, mean Ct 26.3). Gastric biopsies which were tested as a control all were negative. Stool evaluation of miR6 in patients with giardiasis showed 90% specificity but only 66% sensitivity, and a lower accuracy rate was obtained with miR5. CONCLUSION: Giardia miR5 testing in duodenal biopsies may be a new method for the diagnosis of giardiasis. It seems to be more sensitive when compared with testing for Giardia DNA by qPCR in duodenal biopsies. It will be important to investigate the contribution of routine Giardia miRNA testing in duodenal biopsies from patients with persistent abdominal symptoms.


Subject(s)
Duodenum/parasitology , Feces/parasitology , Giardia lamblia/genetics , Giardiasis/diagnosis , MicroRNAs/analysis , RNA, Protozoan/analysis , Biopsy , Female , Humans , Infant , Infant, Newborn , Male , Sensitivity and Specificity
15.
J Control Release ; 284: 103-111, 2018 08 28.
Article in English | MEDLINE | ID: mdl-29870766

ABSTRACT

Psoriasis is a common, worldwide autoinflammatory, incurable skin disease. miR-197 has therapeutic potential for psoriasis since it can down-regulate the expression of both IL-22RA1 and IL-17RA, subunits of the receptors of IL-22 and IL-17, respectively, which are key cytokines in the disease. Although miR-197 has the potential to treat the disease, several inherent physical barrier properties of the skin challenge miRNA's delivery to the target skin cells. In the present study, we evaluated a therapeutic approach that combines the use of ultrasound (US) as a means to enhance skin permeability with quaternized starch (Q-starch) as an miRNA delivery carrier. This resulted in decreased expression of the miR-197 target proteins and in a significant reduction in the psoriatic activity markers. Our results demonstrate the potential of combinations of US and Q-starch/miR-197 complexes for the topical skin treatment of psoriasis.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems/methods , MicroRNAs/administration & dosage , Psoriasis/therapy , Starch/chemistry , Administration, Topical , Animals , Humans , Mice , Mice, SCID , MicroRNAs/pharmacokinetics , MicroRNAs/therapeutic use , Psoriasis/pathology , Receptors, Interleukin/analysis , Receptors, Interleukin-17/analysis , Skin Absorption , Swine , Ultrasonic Waves
16.
RNA ; 24(6): 828-840, 2018 06.
Article in English | MEDLINE | ID: mdl-29592874

ABSTRACT

Recognition of dsRNA molecules activates the MDA5-MAVS pathway and plays a critical role in stimulating type-I interferon responses in psoriasis. However, the source of the dsRNA accumulation in psoriatic keratinocytes remains largely unknown. A-to-I RNA editing is a common co- or post-transcriptional modification that diversifies adenosine in dsRNA, and leads to unwinding of dsRNA structures. Thus, impaired RNA editing activity can result in an increased load of endogenous dsRNAs. Here we provide a transcriptome-wide analysis of RNA editing across dozens of psoriasis patients, and we demonstrate a global editing reduction in psoriatic lesions. In addition to the global alteration, we also detect editing changes in functional recoding sites located in the IGFBP7, COPA, and FLNA genes. Accretion of dsRNA activates autoimmune responses, and therefore the results presented here, linking for the first time an autoimmune disease to reduction in global editing level, are relevant to a wide range of autoimmune diseases.


Subject(s)
Adenosine/genetics , Inosine/genetics , Keratinocytes/metabolism , Psoriasis/genetics , RNA Editing , RNA, Double-Stranded , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cells, Cultured , Connective Tissue Growth Factor/genetics , Copper-Transporting ATPases/genetics , Escherichia coli Proteins/genetics , Female , Filamins/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Keratinocytes/cytology , Keratinocytes/immunology , Male , Middle Aged , Psoriasis/immunology , Psoriasis/pathology , Young Adult
17.
Exp Dermatol ; 27(6): 603-610, 2018 06.
Article in English | MEDLINE | ID: mdl-29479749

ABSTRACT

The present review describes in detail the existent data regarding feedback loops between miRNAs and cytokines or growth factors in the psoriatic inflammation. We have chosen to describe the roles of miR-31, miR-21, miR-146a, miR-155, miR-197 and miR-99a in this process. This choice derives from the fact that among around 250 miRNAs being altered in the psoriatic lesion, the comprehensive functional role was described only in those detailed above. In addition, considering the molecular targets and the pathways, which may possibly be regulated by those miRNAs, it seems that they may be chosen as preferred targets for the therapy of psoriasis.


Subject(s)
Cytokines/metabolism , Feedback, Physiological , Intercellular Signaling Peptides and Proteins/metabolism , MicroRNAs/metabolism , Psoriasis/metabolism , Humans , Interferon-gamma/metabolism , NF-kappa B/metabolism , Receptor, IGF Type 1 , Receptors, Interleukin/metabolism , Receptors, Interleukin-17/metabolism , Receptors, Somatomedin/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
Nat Commun ; 8(1): 1985, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29215015

ABSTRACT

STING is an innate immune cytosolic adaptor for DNA sensors that engage malaria parasite (Plasmodium falciparum) or other pathogen DNA. As P. falciparum infects red blood cells and not leukocytes, how parasite DNA reaches such host cytosolic DNA sensors in immune cells is unclear. Here we show that malaria parasites inside red blood cells can engage host cytosolic innate immune cell receptors from a distance by secreting extracellular vesicles (EV) containing parasitic small RNA and genomic DNA. Upon internalization of DNA-harboring EVs by human monocytes, P. falciparum DNA is released within the host cell cytosol, leading to STING-dependent DNA sensing. STING subsequently activates the kinase TBK1, which phosphorylates the transcription factor IRF3, causing IRF3 to translocate to the nucleus and induce STING-dependent gene expression. This DNA-sensing pathway may be an important decoy mechanism to promote P. falciparum virulence and thereby may affect future strategies to treat malaria.


Subject(s)
Cytosol/immunology , DNA, Protozoan/immunology , Extracellular Vesicles/immunology , Malaria, Falciparum/immunology , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Cell Line , Cell Nucleus/metabolism , Cryoelectron Microscopy , Cytosol/metabolism , DNA, Protozoan/metabolism , Erythrocytes , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/ultrastructure , Humans , Immunity, Innate , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Malaria, Falciparum/parasitology , Membrane Proteins/metabolism , Monocytes , Phosphorylation , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Primary Cell Culture , Protein Serine-Threonine Kinases/metabolism , RNA, Protozoan/immunology , RNA, Protozoan/metabolism , Signal Transduction
19.
J Infect Dis ; 215(3): 378-386, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28362903

ABSTRACT

BACKGROUND: Schistosomiasis traditionally has been diagnosed by detecting eggs in stool or urine. However, the sensitivity of these examinations is limited, especially in travelers with a low worm burden. Serologic tests have a greater sensitivity, but their results remain positive regardless of treatment and thus cannot be used for follow-up of patients. We hypothesized that detection of worm microRNAs (miRNAs) in serum can overcome the drawbacks of the existing diagnostic methods. METHODS AND RESULTS: Twenty-six returning travelers with schistosomiasis (based on positive results of serologic tests or detection of ova) and 17 healthy controls were included in the study. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) amplification of miRNA extracted directly from 500 µL of serum had limited sensitivity and specificity. However, qRT-PCR analysis of RNA extracted from 200 µL of serum extracellular vesicles detected 4 schistosomal miRNAs; the sensitivity and specificity of the 2 highest expressed miRNAs (bantam and miR-2c-3p) were 86% and 84%, respectively. In 7 patients with posttreatment serum available for analysis, we observed outcomes ranging from a reduction in the schistosomal miRNA level to full recovery from disease. CONCLUSIONS: qRT-PCR of pathogen miRNAs isolated from extracellular vesicles in sera from infected individuals may provide a new tool for diagnosing schistosomiasis in patients with a low parasite burden. This assay could also be used for evaluating the outcome of therapy, as well as disease-control programs.


Subject(s)
Extracellular Vesicles/parasitology , MicroRNAs/blood , RNA, Helminth/blood , Schistosoma mansoni/genetics , Schistosomiasis/diagnosis , Adult , Animals , Female , Follow-Up Studies , Humans , Male , MicroRNAs/isolation & purification , Middle Aged , Real-Time Polymerase Chain Reaction , Schistosoma mansoni/isolation & purification , Schistosomiasis/blood , Schistosomiasis/parasitology , Young Adult
20.
Noncoding RNA ; 2(3)2016 Jun 30.
Article in English | MEDLINE | ID: mdl-29657265

ABSTRACT

The threshold of 200 nucleotides (nt) conventionally divides non-coding RNAs (ncRNA) into long ncRNA (lincRNA, that have more than 200 nt in length) and the remaining ones which are grouped as "small" RNAs (microRNAs, small nucleolar RNAs and piwiRNAs). Promoter-associated RNAs (paRNAs) are generally 200-500 nt long and are transcribed from sequences positioned in the promoter regions of genes. Growing evidence suggests that paRNAs play a crucial role in controlling gene transcription. Here, we used deep sequencing to identify paRNA sequences that show altered expression in a melanoma cell line compared to normal melanocytes. Thousands of reads were mapped to transcription start site (TSS) regions. We limited our search to paRNAs adjacent to genes with an expression that differed between melanoma and normal melanocytes and a length of 200-500 nt that did not overlap the gene mRNA by more than 300 nt, ultimately leaving us with 11 such transcripts. Using quantitative real-time PCR (qRT-PCR), we found a significant correlation between the expression of the mRNA and its corresponding paRNA for two studied genes: TYR and HSPC152. Ectopic overexpression of the paRNA of HSPC152 (designated paHSPC) enhanced the expression of the HSPC152 mRNA, and an siRNA targeting the paHSPC152 decreased the expression of the HSPC152 mRNA. Overexpression of paHSPC also affected the epigenetic structure of its putative promoter region along with effects on several biologic features of melanoma cells. The ectopic expression of the paRNA to TYR did not have any effect. Overall, our work indicates that paRNAs may serve as an additional layer in the regulation of gene expression in melanoma, thus meriting further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...