Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 283, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932194

ABSTRACT

The transition to bipedal locomotion was a fundamental milestone in human evolution. Consequently, the human skeleton underwent substantial morphological adaptations. These adaptations are responsible for many of today's common physical impairments, including hip fractures. This study aims to reveal the morphological changes in the proximal femur, which increase the risk of intracapsular hip fractures in present-day populations. Our sample includes chimpanzees, early hominins, early Homo Neanderthals, as well as prehistoric and recent humans. Using Geometric Morphometric methods, we demonstrate differences in the proximal femur shape between hominids and populations that practiced different lifestyles. We show that the proximal femur morphology is a risk factor for intracapsular hip fracture independent of osteoporosis. Changes in the proximal femur, such as the shortening of the femoral neck and an increased anterolateral expansion of the greater trochanter, are associated with an increased risk for intracapsular hip fractures. We conclude that intracapsular hip fractures are a trade-off for efficient bipedal walking in humans, and their risk is exacerbated by reduced physical activity.


Subject(s)
Hip Fractures , Osteoporosis , Humans , Hip Fractures/etiology , Hip Fractures/complications , Femur Neck , Femur , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...