Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 6593, 2023 04 22.
Article in English | MEDLINE | ID: mdl-37087509

ABSTRACT

Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by a progressive increase in pulmonary vascular resistance leading to right ventricular failure and often death. Here we report that deficiency of transcription factor GATA6 is a shared pathological feature of PA endothelial (PAEC) and smooth muscle cells (PASMC) in human PAH and experimental PH, which is responsible for maintenance of hyper-proliferative cellular phenotypes, pulmonary vascular remodeling and pulmonary hypertension. We further show that GATA6 acts as a transcription factor and direct positive regulator of anti-oxidant enzymes, and its deficiency in PAH/PH pulmonary vascular cells induces oxidative stress and mitochondrial dysfunction. We demonstrate that GATA6 is regulated by the BMP10/BMP receptors axis and its loss in PAECs and PASMC in PAH supports BMPR deficiency. In addition, we have established that GATA6-deficient PAEC, acting in a paracrine manner, increase proliferation and induce other pathological changes in PASMC, supporting the importance of GATA6 in pulmonary vascular cell communication. Treatment with dimethyl fumarate resolved oxidative stress and BMPR deficiency, reversed hemodynamic changes caused by endothelial Gata6 loss in mice, and inhibited proliferation and induced apoptosis in human PAH PASMC, strongly suggesting that targeting GATA6 deficiency may provide a therapeutic advance for patients with PAH.


Subject(s)
Bone Morphogenetic Proteins , GATA6 Transcription Factor , Oxidative Stress , Pulmonary Arterial Hypertension , Animals , Mice , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Cell Proliferation , Cells, Cultured , Familial Primary Pulmonary Hypertension/pathology , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/pathology , Vascular Remodeling
2.
Circ Res ; 130(5): 760-778, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35124974

ABSTRACT

RATIONALE: The MSTs (mammalian Ste20-like kinases) 1/2 are members of the HIPPO pathway that act as growth suppressors in adult proliferative diseases. Pulmonary arterial hypertension (PAH) manifests by increased proliferation and survival of pulmonary vascular cells in small PAs, pulmonary vascular remodeling, and the rise of pulmonary arterial pressure. The role of MST1/2 in PAH is currently unknown. OBJECTIVE: To investigate the roles and mechanisms of the action of MST1 and MST2 in PAH. METHODS AND RESULTS: Using early-passage pulmonary vascular cells from PAH and nondiseased lungs and mice with smooth muscle-specific tamoxifen-inducible Mst1/2 knockdown, we found that, in contrast to canonical antiproliferative/proapoptotic roles, MST1/2 act as proproliferative/prosurvival molecules in human PAH pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts and support established pulmonary vascular remodeling and pulmonary hypertension in mice with SU5416/hypoxia-induced pulmonary hypertension. By using unbiased proteomic analysis, gain- and loss-of function approaches, and pharmacological inhibition of MST1/2 kinase activity by XMU-MP-1, we next evaluated mechanisms of regulation and function of MST1/2 in PAH pulmonary vascular cells. We found that, in PAH pulmonary arterial adventitial fibroblasts, the proproliferative function of MST1/2 is caused by IL-6-dependent MST1/2 overexpression, which induces PSMC6-dependent downregulation of forkhead homeobox type O 3 and hyperproliferation. In PAH pulmonary arterial vascular smooth muscle cells, MST1/2 acted via forming a disease-specific interaction with BUB3 and supported ECM (extracellular matrix)- and USP10-dependent BUB3 accumulation, upregulation of Akt-mTORC1, cell proliferation, and survival. Supporting our in vitro observations, smooth muscle-specific Mst1/2 knockdown halted upregulation of Akt-mTORC1 in small muscular PAs of mice with SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS: Together, this study describes a novel proproliferative/prosurvival role of MST1/2 in PAH pulmonary vasculature, provides a novel mechanistic link from MST1/2 via BUB3 and forkhead homeobox type O to the abnormal proliferation and survival of pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts, remodeling and pulmonary hypertension, and suggests new target pathways for therapeutic intervention.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Forkhead Transcription Factors/metabolism , Hypertension, Pulmonary , Poly-ADP-Ribose Binding Proteins/metabolism , Pulmonary Arterial Hypertension , Animals , Cell Proliferation , Cells, Cultured , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Mammals , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/metabolism , Vascular Remodeling/physiology
3.
Int J Mol Sci ; 22(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200497

ABSTRACT

Left ventricular (LV) heart failure (HF) is a significant and increasing cause of death worldwide. HF is characterized by myocardial remodeling and excessive fibrosis. Transcriptional co-activator Yes-associated protein (Yap), the downstream effector of HIPPO signaling pathway, is an essential factor in cardiomyocyte survival; however, its status in human LV HF is not entirely elucidated. Here, we report that Yap is elevated in LV tissue of patients with HF, and is associated with down-regulation of its upstream inhibitor HIPPO component large tumor suppressor 1 (LATS1) activation as well as upregulation of the fibrosis marker connective tissue growth factor (CTGF). Applying the established profibrotic combined stress of TGFß and hypoxia to human ventricular cardiac fibroblasts in vitro increased Yap protein levels, down-regulated LATS1 activation, increased cell proliferation and collagen I production, and decreased ribosomal protein S6 and S6 kinase phosphorylation, a hallmark of mTOR activation, without any significant effect on mTOR and raptor protein expression or phosphorylation of mTOR or 4E-binding protein 1 (4EBP1), a downstream effector of mTOR pathway. As previously reported in various cell types, TGFß/hypoxia also enhanced cardiac fibroblast Akt and ERK1/2 phosphorylation, which was similar to our observation in LV tissues from HF patients. Further, depletion of Yap reduced TGFß/hypoxia-induced cardiac fibroblast proliferation and Akt phosphorylation at Ser 473 and Thr308, without any significant effect on TGFß/hypoxia-induced ERK1/2 activation or reduction in S6 and S6 kinase activities. Taken together, these data demonstrate that Yap is a mediator that promotes human cardiac fibroblast proliferation and suggest its possible contribution to remodeling of the LV, opening the door to further studies to decipher the cell-specific roles of Yap signaling in human HF.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Proliferation , Heart Failure/pathology , Myofibroblasts/pathology , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Case-Control Studies , Cells, Cultured , Female , Heart Failure/metabolism , Humans , Male , Myofibroblasts/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Transcription Factors/genetics , Transcriptional Activation , YAP-Signaling Proteins
4.
Arterioscler Thromb Vasc Biol ; 40(6): 1543-1558, 2020 06.
Article in English | MEDLINE | ID: mdl-32268788

ABSTRACT

OBJECTIVE: Pulmonary hypertension (PH) due to left heart disease (group 2), especially in the setting of heart failure with preserved ejection fraction (HFpEF), is the most common cause of PH worldwide; however, at present, there is no proven effective therapy available for its treatment. PH-HFpEF is associated with insulin resistance and features of metabolic syndrome. The stable prostacyclin analog, treprostinil, is an effective and widely used Food and Drug Administration-approved drug for the treatment of pulmonary arterial hypertension. While the effect of treprostinil on metabolic syndrome is unknown, a recent study suggests that the prostacyclin analog beraprost can improve glucose intolerance and insulin sensitivity. We sought to evaluate the effectiveness of treprostinil in the treatment of metabolic syndrome-associated PH-HFpEF. Approach and Results: Treprostinil treatment was given to mice with mild metabolic syndrome-associated PH-HFpEF induced by high-fat diet and to SU5416/obese ZSF1 rats, a model created by the treatment of rats with a more profound metabolic syndrome due to double leptin receptor defect (obese ZSF1) with a vascular endothelial growth factor receptor blocker SU5416. In high-fat diet-exposed mice, chronic treatment with treprostinil reduced hyperglycemia and pulmonary hypertension. In SU5416/Obese ZSF1 rats, treprostinil improved hyperglycemia with similar efficacy to that of metformin (a first-line drug for type 2 diabetes mellitus); the glucose-lowering effect of treprostinil was further potentiated by the combined treatment with metformin. Early treatment with treprostinil in SU5416/Obese ZSF1 rats lowered pulmonary pressures, and a late treatment with treprostinil together with metformin improved pulmonary artery acceleration time to ejection time ratio and tricuspid annular plane systolic excursion with AMPK (AMP-activated protein kinase) activation in skeletal muscle and the right ventricle. CONCLUSIONS: Our data suggest a potential use of treprostinil as an early treatment for mild metabolic syndrome-associated PH-HFpEF and that combined treatment with treprostinil and metformin may improve hyperglycemia and cardiac function in a more severe disease.


Subject(s)
Epoprostenol/analogs & derivatives , Heart Failure/complications , Hyperglycemia/drug therapy , Hypertension, Pulmonary/drug therapy , Metformin/therapeutic use , Stroke Volume/physiology , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/physiology , Animals , Antihypertensive Agents , Diet, High-Fat , Epoprostenol/therapeutic use , Heart/drug effects , Heart/physiopathology , Heart Failure/drug therapy , Heart Failure/physiopathology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Hypoglycemic Agents , Insulin Resistance , Male , Metabolic Syndrome , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/physiopathology , Rats , Receptors, Leptin/genetics
5.
Pulm Circ ; 10(1): 2045894019898593, 2020.
Article in English | MEDLINE | ID: mdl-32110386

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive fatal disease with no cure. Inhibition of integrin-linked kinase (ILK) reverses experimental pulmonary hypertension (PH) in male mice, but its effect on severe experimental PH in either male or female animals is unknown. We examined effects of ILK inhibitor Cpd22 on rats with SU5416/hypoxia-induced PH; treatment was performed at six to eight weeks after PH initiation. Five weeks after PH initiation, male and female rats developed similar levels of PH. Eight weeks after PH induction, vehicle-treated male rats had more severe PH than females. Cpd22-treated males, but not females, showed complete suppression of phospho-Akt in small pulmonary arteries (PAs), significantly lower PA medial thickness and percentage of fully occluded arteries, decreased systolic right ventricle (RV) pressure, PA pressure, RV hypertrophy, RV end-diastolic pressure, and improved RV contractility index compared to vehicle-treated group. Cpd22 suppressed proliferation of human male and female PAH pulmonary artery vascular smooth muscle cell (PAVSMC). 17ß-estradiol had no effect as a single agent but significantly attenuated Cpd22-dependent inhibition of proliferation in female, but not male, PAH PAVSMC. Taken together, these data demonstrate that male rats develop more severe PH than females but respond better to Cpd22 treatment by reducing pulmonary vascular remodeling, PH, and RV hypertrophy and improving RV functional outcomes. 17ß-estradiol diminishes anti-proliferative effect of Cpd22 in female, but not male, human PAH PAVSMC. These findings suggest potential attractiveness of ILK inhibition to reduce established PH in males and suggest that the combination with estrogen-lowering drugs could be considered to maximize anti-proliferative and anti-remodeling effects of ILK inhibitors in females.

SELECTION OF CITATIONS
SEARCH DETAIL
...